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The set of complex numbers are denoted by the symbol C.
An arbitrary complex number z € C is of the following form:

z=a-+bi, with aq,beR.

The imaginary unit i, is defined such that:
ic=ii=-1.

This complex number z has two parts:

Im

o the real part R(z) = q; 3

e the imaginary part J(z) =b.

The complex conjugate of z is denoted as 0
Z, and that:

Z=a—bi, withJ(z) =-7J(2). 2

Re

The modulus of z is denoted as |z|, and B

=2 =1 0 1 2 3

that: Figure B.1: A visualization of the

lz| = VaZ + b2

The argument of z is denoted as arg(z)

arg(z) = tan™' (g) , cos(arg(z)) = s

|z

sin(arg(z))

complex number 1 +
2i in the complex
plane.

Tzl

The principal argument of z is denoted as Arg(z) such that Arg(z) still sat-
isfy the relations above and Arg(z) € (—m, ]. We may say the following:

arg(z) = Arg(z) + 2km, fork € Z.

Do be aware that the argument of z is multi-valued by nature of the trigono-
metric functions. This might cause a bit of inconvenience during addition
and multiplication, but will bring loads of trouble in power and logarithmic
functions. We will briefly mention some in the following text, but the inter-
ested reader of this problem should refer to a textbook in complex analysis
to actually (re)visit the related definition and solutions.

From now on, we let 0 = Arg(z) for our convenience.

We may derive the following for any complex number z = a+ bi:

z=a+bi=|z|(cos(0) +1isin(0)).

We introduce the notion 2 for our convenience, such that:

Z=cos(0) +isin(0). with 6 = Arg(z)
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We can find the following facts:

IS

z=1zIZ, | =1
The Euler’s formula tells us:
el® = cos(0) +isin(0).
The Euler’s identity tells us:
e+ 1=0.

Thus, with the format of z = [z|Z, we arrive at the polar form of any complex
number, where 2 only encodes the angular information(argument) of z with
|2 = 1 and the modulus |z| encodes “how much” z stretches or shrinks in
that direction.

Properties

Here we list some noteworthy properties of complex numbers. Given two
complex numbers z and w, then:

R(z) < Izl,13(2)| < Izl 1zl = |zl;
lzw| = |z]lw;

lz4+w| < lz| + W, [z—=w| > [|z| = wl;

B.A Complex Numbers Arithmetics
Given two arbitrary complex numbers:
z1=a+bi , zy=c+di, with z1,2€C, and a,b,¢c,d € R,

we shall go through some basic complex number arithmetics.

Addition and subtraction

z1+zy=(a+c)+(b+d)i
z1—z2=(a—c)+(b—4d)i
The geometrical interpretation of complex number addition appears to be

the effect of a vector addition. Fig B.2 gives an example of two complex
numbers adding together, similar to vectors addition in IR?.
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FMM
[%2] & I
= 3+3]

Figure B.2: A geometric visualization of complex number addition.

Multiplication

21z = (a+bi)(c+di)
= ac+adi+bcitbdi’
=ac—bd+ (ad+bc)i

2121 = (a+bi)(a—bi)
=a’—abi+abi—b?i?

=a’+b?

Multiplication is a lot easier in polar form. We write z1 = |z; el 2z, =
|z5]€192, then

01+6>)

102 — |29 ]|zy)el :

2123 = |z1/e'%7|z;e

The geometric interpretation is then much clearer, multiplying z; by a com-
plex number z; = z;]€192 indicates that the modulus of the original |z;] is
multiplied by a factor |z;| and complete a rotation by 0.

bty 1 o) (12655 )5 €17
= DX/E_AQ‘{_Q—?-Q_J\E‘G
- L'_ Q](-H??)
pi.%
= 4 l™ g
')?qmu E..Ju"‘; ‘Q«vmfa — a," :osD—r\/'s.LB
40,;-;:4(1»5.1-;_,,]:_-_\_:_-:-)
=4 (o +yg l)
= 4:)

Figure B.3: A geometric visualization of complex number multiplication.
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Powers and roots

If we compute the powers of z; in a crude way, we see that it quickly be-
comes messy:
25 = (a+bi)?
=a® — b’ +2abi
z3 = (a+bi)?
= (a® —b%+2abi)(a+bi)
=’ + a’bi—ab” — b’ i+2a’bi+2ab’i’
=a®—3ab? + (3a’b—b3)i

Luckily we still have the polar form, with z = [z|2. We first take a look at
2 =el% = cos(0) +1isin(0) when we calculate the n-th power of 2:

s (eie)n

— eine
we make use of the Euler’s formula,

2™ = cos(nO) +1isin(no)
The Euler’s formula also does not stop us from extending natural number
powers to real number powers. Thus, when calculating the n-th root of

a complex number, we can just take the %-th power and make use the of
Euler’s formula.

To summarize, the power of a complex number z can be conveniently calcu-
lated using its polar form:

2X = |z[¥e*A8(2)  withx € R

It becomes a bit obvious when we make use of the polar form for computation of integer
powers for arbitrary complex number z:

2™ = (cos(0) +isin(0))™ = cos(nd) +isin(nd), withn e NN.
This equation is also called De Moivre’s Theorem.

However, from a historical point of view, proving or even finding De Moivre’s theorem
from Euler’s identity is basically cheating. De Moivre’s theorem appeared earlier and it was
Euler who provided the first proof. We shall quickly demonstrate how to prove De Moivre’s
theorem by mathematical induction.

Proof of De Moivre’s Theorem by mathemtatical induction. When n = 1, the equation is
trivially true. The inductive hypothesis is that the result holds for n =k € IN, to prove the
theorem we need to show that the result holds for n =k +1.

(cos(0) +isin(0))*F! = (cos(8) +isin(0))*(cos(0) +isin(0))
= (cos(kB) +1isin(k6))(cos(0) +isin(0))
= cos(kB) cos(0) — sin(k0O) sin(6) + i(cos(kB) sin(8) + sin(kB) cos(0))

From basic trigonometry relationship, we know:

cos(x+ 3) = cos xcos B —sin asin 3,
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sin(oc+ B) = sin xcos 3 + sin 3 cos « .

Then,
(cos(0) +isin(0))**! = cos(kO + ) + i sin(k6 + 0)
=cos(k+1)0+isin(k+1)0
Now our proof is complete by mathematical induction. |

We have been making use of the principal arqument © in the calculations above, but recall
that the arqument of a complex number is multi-valued with a period of 2m. With integer’s
power of z, we are safe because 2mtkn are still integer multiples of 2. When we are trying
to extract n-th roots, then much care has to be taken.

For v,z € C, we assume that vy is the n-th root of z. We have the following relationships:

1
Y =2zn

Let Arg(z) = 0 and Arg(y) = ¢ , we express the relationship above in polar form:

ylei(@+2km) m%é%

Now, within the range of (—m, t|, we have n candidates of “principal” arquments! Are these
n complex numbers the roots of the complex number z? The answer is a clear yes! Think
about the n-th root of real numbers, for example, the square root of 4 can be either 2 or —2.
The fundamental theorem of algebra also tells you that a n-th degree polynomial should have
n complex roots. To tie up the loose end, which one is the principal arqument? It depends
on your preference or the specific nature of the problem you are working on. Normally, when
you are speaking of roots, you talk about all possible complex roots instead of just calling
out one root as your “principal”.

Division

Z1 a+Dbi

z2 c+di
(a+bi)(c—di)
(c+di)(c—di)
ac+bd+ (bc—ad)i

c? +d?

ac+bd bc—ad,
¢+ d? + Zraz’

In polar form:

21 _ 21l o —0)

z2 |z

B.B Quadratic Polynomials
We look at quadratic polynomials of the form:

f(x) =ax’ +bx+c, witha,b,ceR.
We may obtain a unique factorization with roots r; and r;:

fix) =ax? +bx+c=ax—r)(x—12).
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In order to find the roots we solve the quadratic equation:
ax? +bx+c =0.

If we obtain such a form:
(X - [3)2 = 0(2 s

We may easily discover the roots:

x—p =+«
x=pf+t«

We re-write (x — 3)? = «? into:

x—2p+p2—a?=0.

And we re-write the quadratic formula ax? 4+ bx + ¢ = 0 into:

b
X2t xS =0.
a a

We may easily spot the correspondence of the coefficients:

=2 pros2=C,
a a
We can get:
b
B__Zl
then
b 2
(=5, =
b e 2
402 «a
o(_i\/bz—élac

2a

Thus we obtained the quadratic formula for the roots of our quadratic poly-

nomial:
—b+ vb?2 —4ac
x=PBta=
2a
Then we have the discriminant A:
A =b? —4ac.

e when A > 0, the quadratic formula has 2 distinct real roots;
e when A =0, the quadratic formula has 1 real root with multiplicity 2;

e when A < 0, the quadratic formula has 2 distinct complex roots and

they form a complex conjugate pair.
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B.c Exercise problems
1. For each of the following complex numbers:
calculate the modulus and argument and write the polar form;
find the complex conjugate;

visualize the given complex number and the complex conjugate
you find in the complex plane.

a) 3+4i
b) 11i
¢ —1—i
d) -3+i
2. Calculate:
a) (13+5i)+(8—2i)
b) (2i)— (7+71)

Q) (5—2i)(2+41)

d) 3+2§

e) 7—§i

B.D The fundamental theorem of algebra

A univariate complex polynomial P of degree n > 0 is of the following form:
P(z) = anz™ + apn_12" "+ ..+ ajz+ apz®,
in which z € C and agp, ay,...,an_1,an € C.

Fundamental Theorem of Algebra . Every non-constant univariate polynomial
in C possesses at least 1 root in C.

We will not show the proof of this theorem as the proof requires some effort
and would be a large deviation from our little piece of text.

Statement  The fundamental theorem of algebra tells us that in C, we can finally
state that a n-th order polynomial has exactly n roots!

Proof. Consider a complex univariate polynomial

P(z) = an = 0cyz", where Yk =0,1,..,1, ¢, € C.



Based on the fundamental theorem of algebra, we know that P(z) has at least
1 root, we denote this root as r7. We can then factorize this polynomial:

Ck k
P(z) = cn(x— n—lk=0-=%
(2) = ealx—m1) ) 0

In the meantime, the ‘remainder polynomial’ ) n—1k = Ock k is also a
complex univariate polynomial and based on the fundamental theorem of
algebra also has at least 1 root. We can repeat this line of reasoning for
a total of n — 1 times till the order of the ‘remainder polynomial” becomes
1. Then we will find the last factor and completed the factorization of P(z).
Thus we have proved that P(z) is completely uniquely factorized with n
(non-distinct) linear factors that corresponds to n (non-distinct) roots up to
a permutation of these factors/roots. O

In fact, with the statement and proof above, we come to an equivalent state-
ment of fundamental theorem of algebra below.

Fundamental Theorem of Algebra . Every complex polynomial P(z) of degree
> 1 has a unique factorization of distinct linear factors up to a permutation of
these distinct factors.

P(z) =clz—71)™(z—712)™2..(z— 1) ™,

where the roots v1,72, ..., 7 € C are distinct and the corresponding multiplicities
mi, my, ..., my > 0.

B.E Why complex numbers? (Just a tiny bit more than usual undergraduate
engineering math...but fun!)

We quickly rush back to Section B.b and take a quick look back. When we
are considering the polynomial

f(x) = ax’ +bx+c, withab,c,xeR,

nothing is complex. We have all coefficients of f(x) in R, the function f is
amap R — R, we can graph it in R?. There is nothing in C, or to be a bit
more precise since many of you may know that R C C, the arithmetic ‘party’
f(x) = ax? + bx + ¢ did not really invite the imaginary part. But when we
discuss about the roots, the imaginary parts just shows itself, otherwise we
are forced to say that when A < 0 the roots do not exist (in R)!

Perhaps primary school students can happily live with this, but a mathemati-
cian, or even a concerned undergraduate student might feel deeply worried.
This is just polynomials of order 2 and you need to discuss 3 different situa-
tions and even one of them tells you the root do not exist! What if you need
to discover the roots of higher order polynomials? Things get ugly really
fast, perhaps faster than you could imagine...

Going back to the quadratic polynomial case, if the discriminant A < 0, we
may write the quadratic formula in this form:

—b +v—1V4ac — b2
2a
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As long as we accept the existence of /—1 and extend the R, we can tackle
all possibly occurring roots for such kind of univariate polynomials.

Think about the arithmetics you have learned through out the years of school:
addition, subtraction, multiplication, division. If you think about these in IR,
there is (almost) nothing to worry about. When you add or subtract or mul-
tiply no matter how many real numbers, the result is always a real number.
Division is a bit trickier due to the possible existence of 0 in the denominator
but that is the only outlier and we may safely call it ‘undefined’. Of course it
is possible to define some abstract algebraic structure such that division by o
is defined. For those readers who are curious enough and ready to see some
abstract algebra, I would like to point to a specific interesting example called
‘wheel theory” and it has some interestingly weird properties that are totally
different from real numbers. I would like to stop this discussion here before
we really urge ourselves to dive deep into abstract algebra and comfortably
claim the fact that division by zero is undefined in all circumstances that we
may encounter.

When we think about power, it is still fine within IR. It would be nice if we
know the roots as well because the roots are considered to be the ‘inverse” of
powers. But now the problem occurs with the inverse of even order powers,
f(x) = x™ when n € 2k | k € IN is neither injective nor surjective in R! In
other words, multiple x could map to the same f(x) value and there exist
values in R that are not possible to obtain through f(x), vx € R.

Before we continue, I would like to first present the definition of a ‘field’.

Definition 1 (Field). A field is a set F together with two binary operations +
(addition) and - (multiplication) such that the following axioms hold for all
a,b,ceF:

1. (Additive Associativity) a+ (b+c) =(a+b)+c
2. (Additive Commutativity) a+b=b+a
3. (Additive Identity) There exists an element 0 € F such thata+0=a

4. (Additive Inverse) For each a € F, there exists an element —a € F such
thata+ (—a) =0

5. (Multiplicative Associativity) a-(b-c)=(a-b)-c
6. (Multiplicative Commutativity) a-b="b-a

7. (Multiplicative Identity) There exists an element 1 € F, 1 # 0, such
thata-1=a

8. (Multiplicative Inverse) For each a € F, a # 0, there exists an element
a ' eFsuchthata-a ' =1

9. (Distributivity) a-(b+c)=a-b+a-c



The set of rational numbers Q, the set of real numbers R, and the set of
complex numbers C are all fields. You may spot in the definition that only
addition and multiplication is defined but not really directly point to sub-
traction and division.

A quick-reacting reader might immediately claim that subtraction a — b is
basically defined by the addition between a and the additive inverse b: a +
(—=b). The division ¢ with b # 0, can also be defined by multiplication
between a and the multiplicative inverse of b: a-b~'. So we are safe to just

stick to the two foundational operations: addition and multiplication.

Now we converge to our previously heavily discussed topic: polynomials.
Polynomials are just the most natural function that combines addition and
multiplication which are our two fundamental operations in a field. Poly-
nomials are a generalization of numbers in any base and can be used to
approximate any function. In many branches of mathematics, polynomials
play a crucial role and if I'm allowed to continue there will be an endless list
of the use of polynomials.

Polynomials are so fundamental yet so important such that mathematicians
put much effort into researching properties of polynomials. There are lots of
mathematical structures in manipulating polynomials such as factorization
which leads to roots of polynomials. Now if we consider the field IR, we have
already shown that there might be roots lying outside R. To mathematicians,
this is sub-optimal. Even if R is a complete field that allow us to do calculus
and analysis which occur mostly in university level mathematics, it is still
too weak to solve polynomials, a subject that pop-up in primary school math
class.

We desire a field such that we may solve the most natural functions, polyno-
mials, within the field. This field is the set of complex numbers C and such
kind of field is called algebraically closed field. We wrap-up this section by
formally stating the definition of an algebraically closed field.

Definition 2 (Algebraically Closed Field). A field F is said to be algebraically
closed if every non-constant polynomial with coefficients in F has at least one
root in F. That is,

Vf(x) € F[x], deg(f) > 1 = Ja € F such that f(x) = 0.

Equivalently, every polynomial in F[x] of degree n > 1 can be factored into
linear factors over F:

fx) =alx—a1)(x—o2) - (x—an), with o €F.

There is much more to the matters we discussed in this short section, and
hopefully my brief discussion has raised some interested eyebrows. We en-
courage the really enthusiastic readers to further explore in the field of ab-
stract algebra, trust me there is tons of fun (and most-likely accompanied by
tons of frustration).
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