D KNOWLEDGE RECAP: ORDINARY DIFFERENTIAL EQUA-TIONS (ODE)

ODEs are equations that involve ordinary derivatives. This recap section is made to be example-based such that the reader can quickly recall the techniques they have learned.

The 1st example

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,y} = \cos(t)$$

This is perhaps the most straight forward one to solve, we can easily get:

$$x = \sin(t) + C$$
, C is a constant.

Of course if you are dealing with:

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,y}=0$$

then,

$$x = C$$
, C is a constant.

The 2nd example

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,t} = \sin(t) + t^2$$

To find x(t), we first integrate both sides of the equation:

$$\int \frac{\mathrm{d}x}{\mathrm{d}t} \, \mathrm{d}t = \int \sin(t) + t^2 \, \mathrm{d}t$$

We can also discover x(t) by straight forward computation of the indefinite integral:

$$x = -\cos(t) + \frac{t^3}{3} + C$$

C is a constant, although from the differentiation's point of view, a constant is not interesting at all but in many application scenarios we still would like to know the constant. We need initial conditions, for instance $x(t_0) = K$. Then,

$$\int_{t_0}^t \frac{dx}{d\tau} d\tau = \int_{t_0}^t \sin \tau + \tau^2 d\tau$$

We may find:

$$x(t) = -\cos t + \frac{t^3}{3} + \cos t_0 - \frac{t_0^3}{3} + K$$

^{© 2025} Hanshu Yu. This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The 3rd example

$$\frac{dx(t)}{dt} = mx(t) + n, \quad \text{with } m \neq 0.$$

We can find x(t) by separating variables to two sides of the equation and integrate both sides.

$$\frac{\frac{d x(t)}{d t}}{mx(t) + n} = 1$$
$$\frac{d x(t)}{mx(t) + n} = 1 d t$$

We completed the separation and now we integrate both sides to find x(t),

$$\begin{split} \int \frac{1}{mx(t)+n} dx &= \int 1 dt \\ \frac{1}{m} \log |mx(t)+n| + C_1 &= t+C_r \\ |mx(t)+n| &= e^{mt} e^{mC_r - mC_1} \\ x(t) &= \frac{e^{mC_r - mC_1}}{m} e^{mt} - \frac{n}{m} \\ x(t) &= C e^{mt} - \frac{n}{m} \end{split}$$

The 4th example

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,t} + x(t) = t^2$$

We see that there is already a separation of variables, we attempt to integrate both sides,

$$\int \frac{\mathrm{d}x}{\mathrm{d}t} + x(t) \, \mathrm{d}t = \int t^2 \, \mathrm{d}t$$

The right part of the equation is easily approachable but the left part of the equation looks terrible! When we recall the Lebniz product rule for derivatives:

$$\frac{dxy}{dt} = \frac{dx}{dt}y(t) + x(t)\frac{dx}{dt}$$

If there is a function $\gamma(t)$ such that:

$$\frac{\mathrm{d}\gamma(t)}{\mathrm{d}t} = \gamma(t).$$

Then we could utilize this property of $\gamma(t)$ and multiply it to both sides of our ODE, such that on the left hand side of the equation we may construct the right hand side of the product rule:

$$\frac{d\,x\gamma}{d\,t} = \frac{d\,x}{d\,t}\gamma(t) + x(t)\frac{d\,\gamma}{d\,t} = \gamma(t)t^2$$

Luckily, we have such a $\gamma(t)$:

$$\gamma(t) = \mathbf{e}^{t} = \frac{\mathrm{d}\,\gamma}{\mathrm{d}\,t}$$

Thus, our ODE becomes:

$$e^{t}\frac{dx}{dt} + x(t)e^{t} = e^{t}t^{2}$$

We integrate both sides now:

$$\int e^{t} \frac{dx}{dt} + x(t)e^{t} dt = \int e^{t}t^{2} dt$$

Using the Lebniz product rule for the left hand side and utilize the integration by parts formula

$$\int x(t)y'(t) \, dt = x(t)y(t) - \int x'(t)y(t) \, dt$$

to the right hand side (twice), we will come to:

$$e^t x(t) = e^t (t^2 - 2t + 2) + C \,, \quad \text{where C is a constant.}$$

Then we find:

$$x(t) = t^2 - 2t + 2 + Ce^{-t}$$

The 5th example

$$2\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} + 3\frac{\mathrm{d} x}{\mathrm{d} t} + x(t) = t$$

We again make use of use the exponential function $e^{\lambda t}$ but now with a constant factor λ on the exponent, such that:

$$\frac{\mathrm{d}}{\mathrm{d}\,\mathrm{t}}e^{\lambda\mathrm{t}} = \lambda e^{\lambda\mathrm{t}} \quad \frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{d}\,\mathrm{t}^{\mathrm{n}}}e^{\lambda\mathrm{t}} = \lambda^{\mathrm{n}}e^{\lambda\mathrm{t}}$$

We assume $x(t) = e^{\lambda t}$, put this in to the original ODE, we obtain the homogeneous part:

$$2\lambda^2 e^{\lambda t} + 3\lambda e^{\lambda t} + e^{\lambda t} = 0$$

The characteristic equation is the quadratic polynomial:

$$2\lambda^2 + 3\lambda + 1 = 0$$

The roots are:

$$\lambda_1 = -1$$
, $\lambda_2 = -0.5$

Thus the general solution is:

$$x_h(t) = C_1 e^{-t} + C_2 e^{-0.5t}$$

To find the particular solution, we try $x_p(t)$ is of the form at + b. Putting this into the original ODE yields:

$$2 \cdot 0 + 3a + at + b = t$$

Then we find:

$$a = 1$$
, $b = -3$

Thus the particular solution:

$$x_p(t) = t - 3$$

The solution is the sum of $x_h(t)$ and $x_p(t)$:

$$x(t) = x_h(t) + x_p(t) = C_1 e^{-t} + C_2 e^{-0.5t} + t - 3$$