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Presentation outline

* Integral transform

e Laplace transform
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 ROC of Laplace

* Properties of Laplace transform

Inverse Laplace transform




INTEGRAL TRANSFORM
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Why do we use integral transform?
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Simplification
What does an integral transform do?
Mapping from one domain to another

Originates from:
Solving differential equations




INTEGRAL TRANSFORM

Given a general integral transform T
A function f (m) in m-domain

A target domain: n-domain

A transformation kernel: K(m, n)
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The general integral transform:

b
LIf ()] = f Fm)K (m, n) dm

We have mapped our function f from m domain ton
domain using transformation T




LAPLACE TRANSFORM

Laplace transform L

A function f (t) in t-domain

A target domain: s-domain

A transformation kernel: K(t,s) = e
Where s = 0+ jw
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The Laplace transform:

LIf()] = f f(t)e stdt

We have mapped our function f from t-domain to s-
domain using L .

This is call bilateral Laplace transform.




UNILATERAL
LAPLACE TRANSFORM

Recall that we are only working with causal system!
So whatever beforet = 0 we do not care, we start from 0!
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The unilateral Laplace transform:

LIF(©)] = f F(O)e=stdt
0

A transformation kernel: K(t,s) = e~ 5t

Where s = 0+ jw




UNILATERAL
LAPLACE TRANSFORM

The unilateral Laplace transform:
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LIf(£)] = f F(b)e-stdt
0

A transformation kernel: K(t,s) = e™¢

Where s = 0+ jw

BUT WHY???




CONVERGE !
CONVERGE !
CONVERGE !

We are integrating from 0 to oo.
So f(t)K(s,t) must converge for out integral to exist.
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The unilateral Laplace transform:

LIf()] = f f(t)e™stdt
0

A transformation kernel: K(t,s) = e~ 5t

Where s = 0+ jw




REGION OF CONVERGENCE

The unilateral Laplace transform:

Lif(t)] = j f()e™*'dt \We are integrating from O to co.
So f(t)K(s,t) must converge for out
A transformation kernel: integral to exist.
\I/(v(r? s)=e” We look at f(t) and K(s, t)
e s =orje separately, K(s, t) first.
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Assume: f(t) =

00) (0.0) (0.0)
je‘“dt = f e~ (@Hjo)tqy = j e OleTIwtdt
0 0 0
Remember from complex analysis:
le /9t =1

Then we only have:
—ot

e
To converge: 0 > ( .
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REGION OF CONVERGENCE

The unilateral Laplace transform:

LIF(0)] = j F(O)estde
0

A transformation kernel: Assume:s=0+j0
K(t,s) =e 5t
Where s = 0+ jw

Of £(t) dt

Without our kernel, f(t) should converge.
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REGION OF CONVERGENCE

The unilateral Laplace transform:

b

v

Lif(t)] = j f(t)e stdt |
)

A transformation kernel: Assume:s=0+jw —
K(t,s) =e 5t
Where s = o+ jw
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jf(t)e‘j“’tdt ,and |e /¥t =1
0

We are traversing through the complex plane now, but our
ROC still relies on the properties of f(t).

Note! This is not Fourier transform!!! .




REGION OF CONVERGENCE

The unilateral Laplace transform:
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LIF(0)] = j F(O)estde
0

A transformation kernel:
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K(t,s) = et Assume:s=0 + jw

Where s = 0+ jw
(0.0)
J e Lf(t)e /®tdt ,and |e /| =1
0

Finally, when o > 0, we have an “envelop” e~ 9% that make our
transformation exist.

This gives us the desired properties of f(t)

1. f(t) should be integrable and defined for [0, o)

—st
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REGION OF CONVERGENCE
THE “POLAR VIEW”

For any complex numberz = a + jb, the polar form:

z = |z|2, 2=e9,0 = Arg(2)

Forour f(t)K(s,t) = f(t)e (eHw)t.
We can obtain a polar representation:
|Z|€i9
|z = e " f(¢)
0 =—wt
Putting them together:

FOK(s, ) = [e~tf(6)] €10

13



KERNEL OF LAPLACE

K(s,t) = f(t)e (etiw)t
This is a very beautiful probing function for measuring our
function f(t). Q

t
de _ et

dt
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This probe gives us very nice analytical properties such that
we can map many time domain signals into complex space.

In the meantime, this probe still carries enough information
such that we can recover the real signal from complex
plane. (Lerch’s theorem)

Laplace transform is ONE-TO-ONE (injective).
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CONVERGE
CONVERGE
CONVERGE !

Impatient guy from engineering department rushed to me:
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“THESE ARE JUST MATHEMATICAL TRICKS! Mathematical
rules and all! Does not make sense in practice!”

“How does these relate to application & real systems?”
“WHY should we care ????”

| say:

“Because of the physical meanings”
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RECALL:

SYSTEMS: THE KEY TAKEOUT

No matter how much we simplify,
we are working with physical systems.

The mathematical tools you see later,

are describing the characteristics of the physical system.

(REENEYHE

i/ \éﬁ :

BHEE! )
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ACTUAL PHYSICAL SYSTEMS
OF INFINITE ENERGY
DOES NOT EXIST!

Energy = Power over TIME.

OF APPLIED SCIENCES

As t-> oo, diverging power, infinite energy, impossible.
If this is the governing equation, the system will break!

Unstable!

If you sit in the lecture room,

17



EXAMPLE
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f©) =e®

Laplace transform:

F(s) = L[f(t)] = ff(t)e‘st dt
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eate—st dt

OfOO
= [ eteorar

0
Without getting the exact F(s), we can already infer where is
the ROC:
a—o0c<0

o> a 1
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EXAMPLE

Laplace transform:

F(s) =

f©) =e®

[f()] = ff(t)e‘st dt

eate—st dt

|
|

e(@=s)t ¢ l

4Im 1

|

|

a—oc<0 I
.,
o> a a Re

|
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EXAMPLE
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f@) =e®

Laplace transform:
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FM=LU@H=jf@k*%M
0

= [ eteorar
0
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LAPLACE TRANSFORM TABLE

1. AL(D)

2. &)-1(b)
3. t1(t)

4. ed.1(t)

5. sin(wt)-1(t)

6. cos(awt)-1(t)

21
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LAPLACE TRANSFORM TABLE

7(t) F(s) = L[f(t)]

f®) =1 F(s)= 5> 0
F(t) = est P(s) = 1 = o

f(t) =tn F(s) = &Lll) 5>0

f(t) = sin(at) F(s) = #'az s>0

f(t) = cos(at) F(s) = ﬁ 5>0

f(t) = sinh(at) F())= 5—— s> |a|
f(t) = cosh(at) F(s) = ﬁ s> |a
F(t) = treat Fia) = ﬁ "

Flt) = e sini(bé) P(s) = ;7= a')’2 — —

f(£) = 9t cos(bt) Fs) = Esa;zal = s>a

£(£) = €%t sinh(bt) P(s) = = a')’2 — ——
f(t) = e cosh(bt) Pl — 2 —8) s—a> |b|

(s —a)? — b2
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INVERSE LAPLACE TRANSFORM
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The time domain signal can be obtained from the
frequency domain signal using inverse Laplace transform.
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o+joo

— — 1 St
f0 = L7 [F)] = 5o f F(s)est ds
og—joo

Without transform table, you can use Cauchy’s residue
theorem for a contour integral with the closed contour of
the integration as the region of convergence.

Luckily you will have the table in the formula sheet in the
exam.®
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LAPLACE PROPERTIES

v

LIF(©)] = f F(O)e=stdt
0
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LINEARITY
a-f(t) © a-F(s)

f() +g(t) = F(s) + G(s)

a-f(t)+b-g(t) = a-F(s)+b:G(s)
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LAPLACE PROPERTIES

LIF(©)] = f F(O)e=stdt
0

TIME SCALING
1 S
f(at) & — - F (—)

la]  ‘a
TIME SHIFTING

f(t—a) © e *-F(s)
EXPONENTIAL SCALING (DAMPING)

e f(t) © F(s + a)

25



Damping (example)

N

What do we need to find the laplace transform of f(t)?

f(t) = e %cos(wt)

UNIVERSITY
OF APPLIED SCIENCES

Laplace transform theorems:

2. Damping e £(t) F(s+a)
Laplace transform table: 1
4. e1(t) s_a
6. cos(wt)-1(t) 5 > 5
S +w
(s+a)

(s + a)2+w? 26




LAPLACE PROPERTIES
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DIFFERENTATION
LIf'(t)] = sF(s) — f(0)
L[f" ()] = s*F(s) — sf(0) — f'(0)

General formula:

LIf®©®)] =
SKF(s) = s*71f(0) = s*72 10— sf U2 (0) — 1 (0)

Differentiation in t-domain in becomes an operator in s-
domain.

27




v

D=0
o
u.lgs
2z
2
==

LAPLACE PROPERTIES

LIFO] = | f(edr
0

INTEGRAL

() = fo F()de

With Laplace transform:

1
G(s) = ;F(s)
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LAPLACE PROPERTIES
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LIFO] = | f(edr
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From CONVOLUTION to MULTIPLICATION
t
() * g(b) = f F(Dg(t 1) de
0

With Laplace transform:

f(t) x g(t) = F(s)G(s)

Convolution in t-domain in becomes multiplication in s-domain.
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LAPLACE PROPERTIES
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LIFO] = | f(Oedr
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INITIAL VALUE THEOREM
hm f (t) = lim sF(s)
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S— 00
Proofl:
f is causal & bounded such that tlir51+ f(t) = «, we play with definition
r r t t t Oo1 t
F(s) = t ‘Stdt=j (—) sd—= j — (—) ~tde
)= | rwe Fx)essaz=[ =f()e
0 0 0

sF(s) = j f (S) e~tdt

0
Based on Lebesgue’s dominated convergence theorem, we can have

ITiME
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lim sF(s) = j ae tdt = a = tlir51+ f(®)

S— 00

30
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LAPLACE PROPERTIES

v

LIFO] = | f(Oedr
0

INITIAL VALUE THEOREM
hm f (t) = lim sF(s)
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Proof2:
f is causal & bounded such that tlirg1+ f(t) = «a, we play with definition

(00] (0]

F(s) = Of F(De=stdt = f f(g)e-%dg: f % f(é)e‘tdt

0 0
00

sF(s) = j f (g) e tdt

0
We select a § € R sufficiently close to 0 such that f;o e~ tdt < e that is arbitrarily

small and llmf( ) = a fort € (0, 6], we may also conclude that:
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lim sF(s) = j ae tdt = a = lim f(t) 31
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LAPLACE PROPERTIES
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LIFO] = | f(Oedr
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FINAL VALUE THEOREM
L}im f(t) = ling sF(s)
—> 00 S—

D=0
o
wig
23
2
==

Proof:
f is continuously differentiable and bounded, and f" is absolutely
integrable.
L]lm f(t) exists and finite.
limsF(s) = lim L j e Stdt
s—0 s—0
0

As obviously lm&e ~St = 1, we have:
S—

d 00
i %th — O |, = 1) >y
0
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LAPLACE PROPERTIES
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We have seen the incredible symmetry between time domain
and the frequency domain.
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* Differentiation in one becomes multiplication in another.

* Exponential scaling in one domain becomes shifting in the
other.
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Modelling example: RC low-pass filter
R

o—V/WA
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U, Gt U
. 2

O O

UNIVERSITY
OF APPLIED SCIENCES

Differential Equation! -> Laplace transform!

out

d
Uin(t) = RC dt + Uout(t)
Uin(S) = RCsUpy; + Uout(S)

Uin RCs Uout +U out
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Modelling example: RC low-pass filter
R
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o, O

Laplace transform! -> Transfer function!

OUTPUT = INPUT - TF
=

__ OUTPUT
INPUT
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Modelling example: RC low-pass filter
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Time domain solution?

Inverse Laplace transform!

H(s) =

1+ RCs

Uoue (s) = H(s)Ujn ()

1
We assume U;,, = . (Constant)
1

Upue (s) =

s(1 + RCs)
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Modelling example: RC low-pass filter
R

# o—/MW—— O
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Inverse Laplace transform!
1
U,,:(s) =
out ($) s(1+ RCs)
Partial fraction decomposition:
Uy, (s) 4 + 5
S) =—
out s 1+RCs

A+ (ARC +B)s = 1
A= 1,B=—RC




Modelling example: RC low-pass filter

Hz,
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D5 A B
U ==
out () S T 1+ RCs
A+ (ARC +B)s = 1
A= 1B =—-RC
1 RC 1 1
Uout(5)=_ —

s 1+RCs s 1
RC

Inverse! Check transform table!
t

Uout(t) =1—e RC

+ S




Modelling example: RC low-pass filter
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Circuit analysis! “The smart way”

Time - domain S-domain
: L 1
Integration Multiplicative operator

Differentiation Multiplicative operator ‘s’
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ELECTRICAL SYSTEMS -
RLC CIRCUITS

v
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Vs
5§ Impedance
> g Voltage - Current (Laplace transformed)
2 <
DS
Resistor U(t) = I(t)R R
_ 1 (1 1
Capacitor U(t) = —j [(7) dt —
CJo Cs
dI(t
Inductor U@t) =1L ) Ls

dt
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Modelling example: RC low-pass filter
R
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Circuit analysis! “The smart way”

Resistive components S-domain Impedance
Resistor R
Inductor Ls
: 1
Capacitor —

41




Modelling example: RC low-pass filter
R
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Circuit analysis!

. 1
Total resistance: R + ~ over U,

. . 1
-ut IS the voltage over resistance —.
Cs

U

Like a simple pure resistor circuit:
1
Ut~ Cs  _ 1
U 1 14+ RCs

In R +E
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Can you create a low-pass filter with a
resistor and an inductor?

Try it yourself!
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Modelling example: Mechanical system

F
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m
1 :

AR

b
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Write differential equation
t

F(t) =k f v(t)dt + bv(t) + m
0
Laplace transform

F(s) = §V(s) + bV (s) + msV (s)

dv(t)
dt




Modelling example: Mechanical system

F
k

—AAAAA—

m
1 :

b

AR

UNIVERSITY
OF APPLIED SCIENCES

F(s) = gV(s) + bV (s) + msV (s)

Transfer function
V(is) 1
F(s) % + b + ms
S

=mSZ+bs+k
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MECHANICAL SYSTEMS -
TRANSLATING SYSTEM

Force - Velocit Impedance
y (Laplace transformed)

b

Damper
(Viscous fpriction) £= b
t
Spring F = kjv(r)dr
0
Mass (Inertia) F = mdv(t)

dt

k
S

ms
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MECHANICAL SYSTEMS -
TRANSLATING SYSTEM

Force — Displacement Impedance
P (Laplace transformed)

Damper dx(t)
— b
(Viscous friction) F=b dt >
Spring F = kx k
2
Mass (Inertia) F = md x () ms

dt?
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SUMMARY
LIFO] = | f(e~de

v

Transform table
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Region of convergence

Properties:
* Linearity
 Symmetry between t-domain and s-domain

* From differentiation and integral to operators in s-
domain

 |nitial & final value theorem

e may use Laplace transform to conveniently solve ODE




SUMMARY
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The physics laws governs our systems’ performance

D=ild
=2
o
wio
2z
Z 3
ik

Analyze your system based on these physics laws

Eventually we can use ODE to describe our desired input
and output

Laplace transform is a handy tool for analysis and finding
solutions
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HOMEWORK

Read appendix A
Knowledge Recap: Complex Analysis

v

You may skip the following contents:
e Jtalic contents on page 22
* Section A.D Why complex numbers?
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They are fun but not essential to our course. But still, for those interested, it is
highly recommended that you take a look.

Stage ONE exercise:

* Problem 4 (you can skip subguestion 4 and 5 for now, 5
is possible to do, so give it a try)

* Problem5

* Problem6

* Problem 7




