

BASIC CONTROL SYSTEMS

03 BLOCK DIAGRAMS

HANSHU YU

NOVEMBER 2025

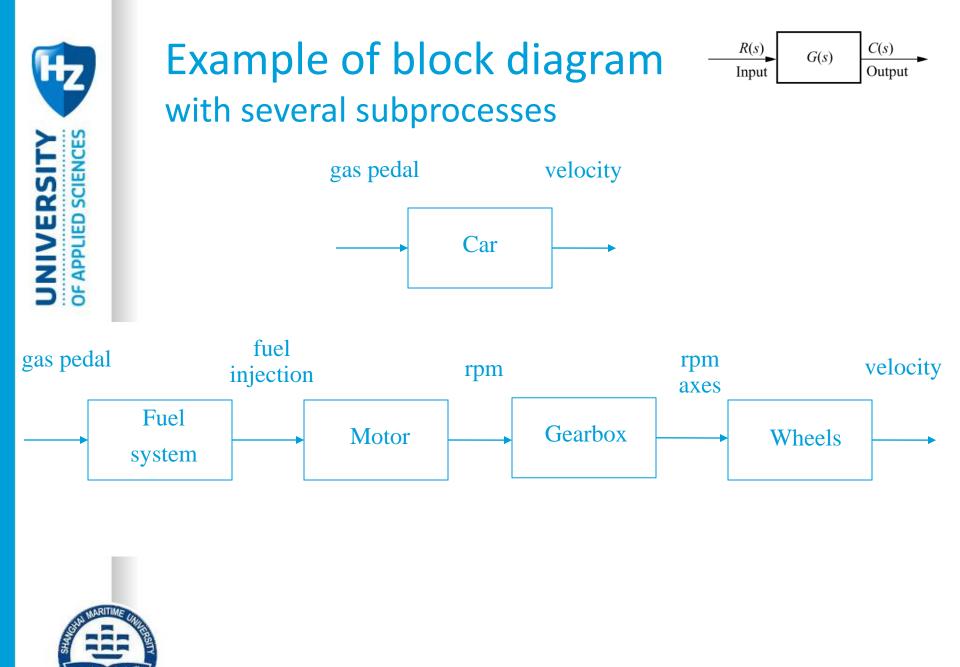
WHERE STUDENTS MATTER

- Only one input and one output
- Output signal changes as a function of the input signal
 Formula: H = Y / X (transfer function)

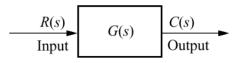
$$X \rightarrow H \rightarrow Y$$

✓ This means also that: $Y = H \cdot X$

➢ Process → sub processes → several boxes



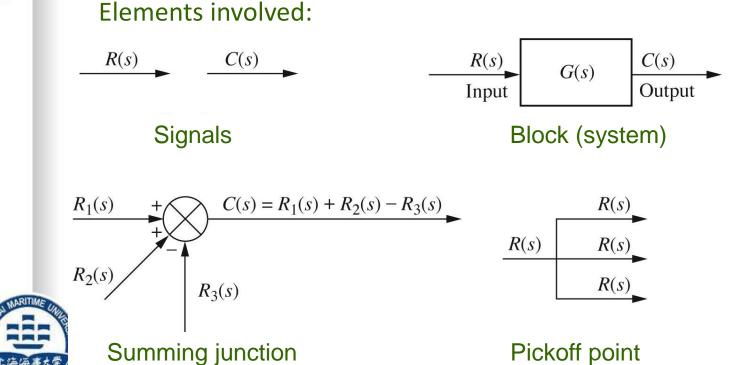
Block diagram



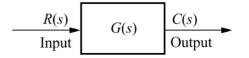
Why using a block diagram?

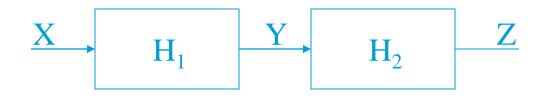
- Blocks draw easier than real physical systems
- Systems look alike (analogy)
- Block diagram easier to read
- Easier to manipulate and calculate

Block properties



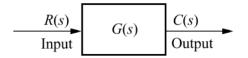
Block properties 1. Series

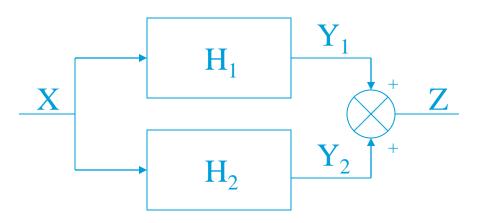




 $Y = H_{1} \cdot X$ and $Z = H_{2} \cdot Y$ hence $Z = H_{1} \cdot H_{2} \cdot X$ $H_{new} = H_{1} \cdot H_{2}$

Block properties 2. Parallel





$$Y_{1} = H_{1} \cdot X,$$

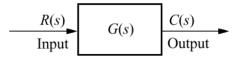
$$Y_{2} = H_{2} \cdot X \text{ and}$$

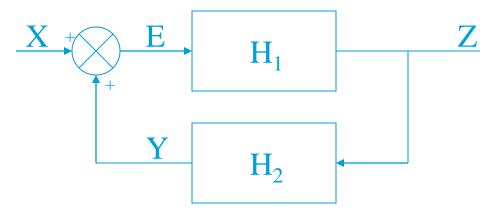
$$Z = Y_{1} + Y_{2} =$$

$$Z = (H_{1} + H_{2}) \cdot X$$

$$H_{new} = H_{1} + H_{2}$$

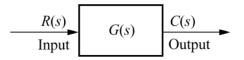
$$M_{new} = H_{1} + H_{2}$$

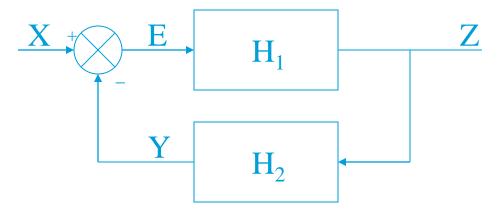




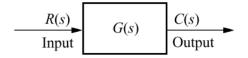
 $E = X + Y \text{ and } Y = H_2 \cdot Z, \text{ hence}$ $E = X + H_2 \cdot Z$ $Z = H_1 \cdot E, \text{ hence}$ $Z = H_1 \cdot (X + H_2 \cdot Z) \Leftrightarrow$ $Z = [H_1 / (1 - H_1 \cdot H_2)] \cdot X$ $H_{new} = \frac{Z}{X} = \frac{H_1}{1 - H_1 \cdot H_2} = \frac{H_{forward}}{1 - H_{loon}}$

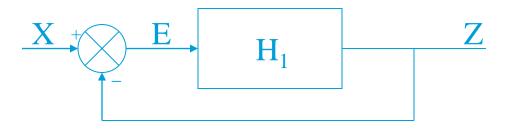
Block properties





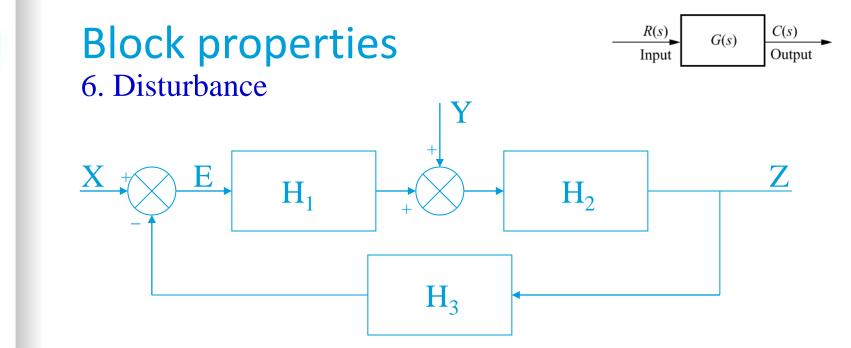
 $E = X - Y \text{ and } Y = H_2 \cdot Z, \text{ hence}$ $E = X - H_2 \cdot Z$ $Z = H_1 \cdot E, \text{ hence}$ $Z = H_1 \cdot (X - H_2 \cdot Z) \Leftrightarrow$ $Z = [H_1 / (1 + H_1 \cdot H_2)] \cdot X$ $H_{new} = \frac{Z}{X} = \frac{H_1}{1 + H_1 \cdot H_2} = \frac{H_{forward}}{1 + H_{loop}}$





Special case of feedback: $H_2 = 1$, so

$$H_{new} = \frac{H_1}{1 + H_1}$$

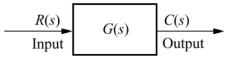


now $E = X - H_3 \cdot Z$ and $Z = H_1 \cdot H_2 \cdot E + H_2 \cdot Y$, this gives:

$$Z = \frac{H_1 \cdot H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot X + \frac{H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot Y$$
$$Z = H_{control} \cdot X + H_{disturbance} \cdot Y$$

UNIVERSITY OF APPLIED SCIENCES

Block properties summary



• Series

 $H_{new} = H_1 \cdot H_2$

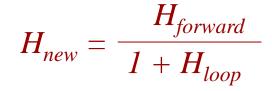
- Parallel
- Positive feedback
- Negative feedback

$$H_{new} = H_1 + H_2$$

$$H_{new} = H_1 / (1 - H_1 \cdot H_2)$$

$$H_{new} = H_1 / (1 + H_1 \cdot H_2)$$

• Alternative way to calculate H_{new} for negative feedback



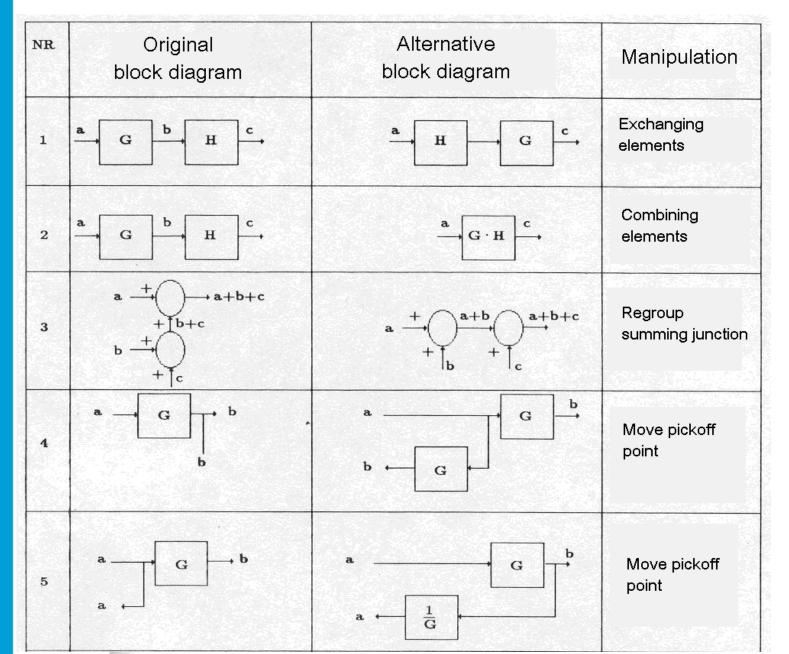
Disturbance

$$Z = \frac{H_1 \cdot H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot X + \frac{H_2}{1 + H_1 \cdot H_2 \cdot H_3} \cdot Y$$

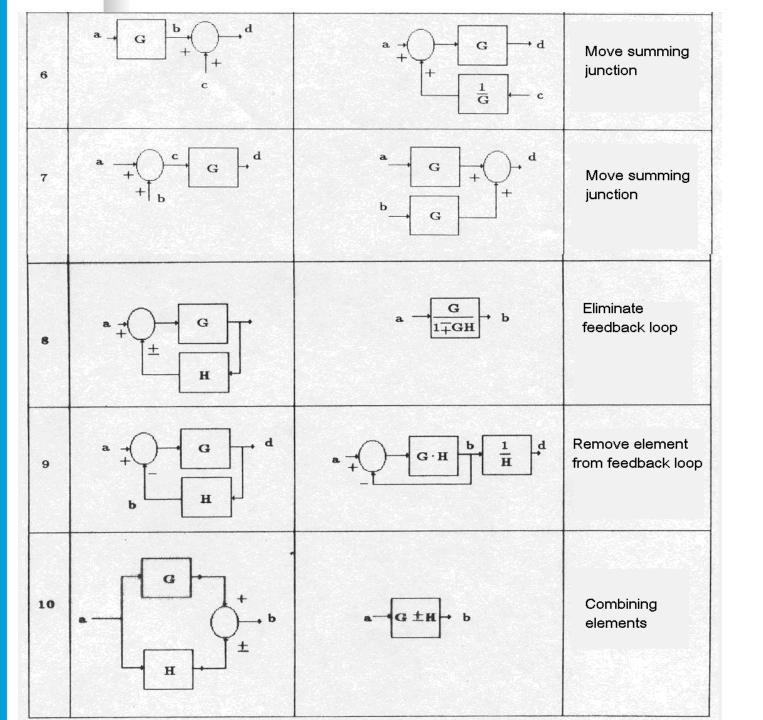
 $Z = H_{control} \cdot X + H_{disturbance} \cdot Y$

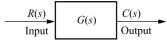
More rules to modify block diagrams

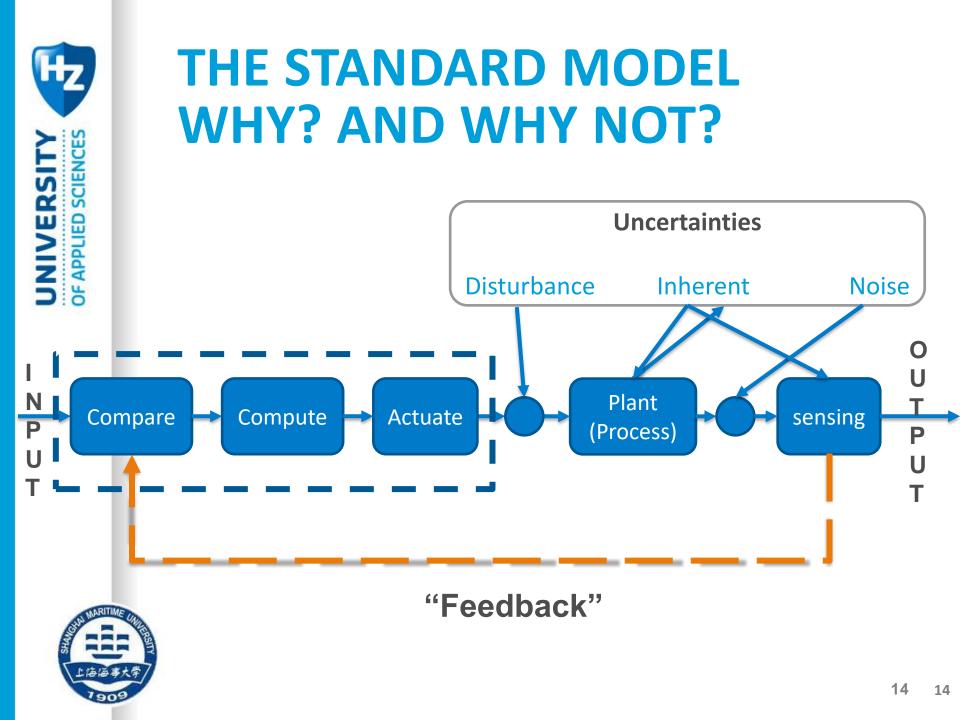
 $\begin{array}{c|c} R(s) \\ \hline \\ Input \end{array} \quad G(s) \quad \begin{array}{c} C(s) \\ \hline \\ Output \end{array}$



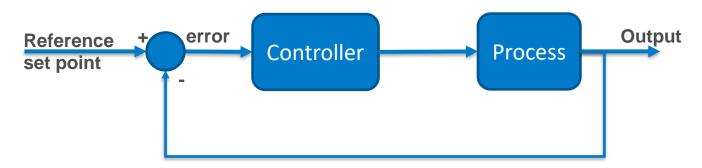
12







THE STANDARD MODEL WHY? AND WHY NOT?



Why unit feedback?

- By playing with block diagram, all LTI system can be represented in this form
- Simple & convenient
- The "error" is quite straight forward, just output-input Why not unit feedback?
- It is mathematically correct, however you are manipulating physical signals. Many times the physical systems and signals are not easily manipulatable.

Solve exercises together with your team!

HOMEWORK

Stage ONE exercise:

• Problem 9

Test exam 3:

Problem 1

Test exam 4:

• Problem 1

