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STABILITY 𝐿 𝒔

For stability: 
the poles should not go across the imaginary axis such that the 
real part is larger than zero! 

We bring back our standard closed loop transfer function.
Characteristic equation: 

1 + 𝐿(𝑠) = 0, 𝐿(𝑠) = 𝐾𝐺(𝑠)𝐻(𝑠)

Poles 𝑠 = 𝑝 should satisfy: 𝐿 𝑠 = −1. The polar form:

𝐿 𝑠 𝐿 𝑠 = 1 𝑒±𝑗𝜋

In the Root Locus exercise, we have looked at K, but what about 
frequency and phase?
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STABILITY & FREQUENCY 
RESPONSE
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STABILITY & FREQUENCY 
RESPONSE

Periodic input!

There exist a frequency 𝜔.

Let’s just assume input is x t = A sin(𝜔𝑡) as 𝑡 ≥ 0.

In s-domain we have output:

𝑌 𝑠 = 𝑋 𝑠 𝐻 𝑠 =
𝐴

𝑠2 + 𝜔2
𝐻(𝑠)

To find the frequency response, we force the real part of s: 𝝈 = 𝟎
And thus 𝒔 = 𝒋𝝎.

The frequency response of the system can be discovered by 𝑯(𝒋𝝎).
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STABILITY & FREQUENCY 
RESPONSE

Periodic input!

There exist a frequency 𝜔.

Let’s just assume input is x t = A sin(𝜔0𝑡) as 𝑡 ≥ 0.

In s-domain we have output:

𝑌 𝑠 = 𝑋 𝑠 𝐻 𝑠 =
𝐴

𝑠2 + 𝜔0
2𝐻(𝑠)

To find the frequency response, we force the real part of s: 𝜎 = 0
And thus 𝑠 = 𝑗𝜔.

The frequency response of the system can be discovered by 𝐻(𝑗𝜔).
But can we do this??? 5
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STABILITY & FREQUENCY 
RESPONSE

Periodic input!

There exist a frequency 𝜔.

Let’s just assume input is x t = Asin(𝜔𝑡) as 𝑡 ≥ 0.

In s-domain we have output:

𝑌 𝑠 = 𝑋 𝑠 𝐻 𝑠 =
𝐴

𝑠2 + 𝜔0
2𝐻(𝑠)

We do partial fraction decomposition to 𝑌(𝑠):

𝑌 𝑠 = 𝑋 𝑠 𝐻 𝑠 =
𝑀

𝑠 + 𝑗𝜔0
+

𝑁

𝑠 − 𝑗𝜔0
+ {𝐻 𝑠 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛}
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H(𝑠)
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STABILITY & FREQUENCY 
RESPONSE

We do partial fraction decomposition to 𝑌(𝑠):

𝑌 𝑠 = 𝑋 𝑠 𝐻 𝑠 =
𝑀

𝑠 + 𝑗𝜔0
+

𝑁

𝑠 − 𝑗𝜔0
+ {𝐻 𝑠 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛}

Based on the uniqueness of Laurent series, M is the coefficient of 
1

𝑠+𝑗𝜔0

in the Laurent series expansion of Y(s) about the singularity point 𝑠 =
−𝑗𝜔0 . 

Then we may conveniently utilize the residue theorem:
𝑀 = Res(Y s ,−j𝜔0)

As 𝑠 = −𝑗𝜔 is a simple root, thus assume 𝐻(𝑠) =
𝑃(𝑠)

𝑄(𝑠)
,

𝑀 = Res Y s , −j𝜔0 =
𝐴 ⋅ 𝑃(−𝑗𝜔0)

d (𝑠2+𝜔0
2)𝑄 𝑠

d𝑠
ȁ𝑠=−𝑗𝜔0
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STABILITY & FREQUENCY 
RESPONSE

We do partial fraction decomposition to 𝑌(𝑠):

𝑌 𝑠 = 𝑋 𝑠 𝐻 𝑠 =
𝑀

𝑠 + 𝑗𝜔0
+

𝑁

𝑠 − 𝑗𝜔0
+ {𝐻 𝑠 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛}

𝑴 = Res Y s ,−j𝜔0 =
𝐴 ⋅ 𝑃(−𝑗𝜔0)

d (𝑠2+𝜔0
2)𝑄 𝑠

d𝑠
ȁ𝑠=−𝑗𝜔0

=
𝐴𝑃 −𝑗𝜔0

−2𝑗𝜔0𝑄(−𝑗𝜔0)

=
𝑗𝐴

2𝜔0
𝐻 −𝑗𝜔0 =

𝑗𝐴

2𝜔0
𝐻 𝑗𝜔0

Similarily, 

𝑵 = Res Y s , j𝜔0 =
𝐴 ⋅ 𝑃(𝑗𝜔0)

d (𝑠2+𝜔0
2)𝑄 𝑠

d𝑠
ȁ𝑠=𝑗𝜔0

=
𝐴𝑃 𝑗𝜔0

2𝑗𝜔0𝑄(𝑗𝜔0)

= −
𝑗𝐴

2𝜔0
𝐻(𝑗𝜔0) = ഥ𝑴
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STABILITY & FREQUENCY 
RESPONSE

We do partial fraction decomposition to 𝑌(𝑠):

𝑌 𝑠 = 𝑋 𝑠 𝐻 𝑠 =
𝑴

𝑠 + 𝑗𝜔0
+

ഥ𝑴

𝑠 − 𝑗𝜔0
+ {𝐻 𝑠 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛}

We look at the forced response:

𝑌𝑓𝑜𝑟𝑐𝑒𝑑 𝑠 =
𝑀

𝑠+𝑗𝜔0
+

ഥ𝑀

𝑠−𝑗𝜔0
,   𝑀 =

𝑗𝐴

2𝜔0
𝐻 𝑗𝜔0

𝑌𝑓𝑜𝑟𝑐𝑒𝑑 𝑠 =
𝑀

𝑠 + 𝑗𝜔0
+

ഥ𝑀

𝑠 − 𝑗𝜔0
=
(𝑠 − 𝑗𝜔0 − 𝑠 − 𝑗𝜔0)

𝑗𝐴
2𝜔0

𝐻(𝑗𝜔0)

𝑠2 + 𝜔0
2

=
𝐴

𝑠2 + 𝜔0
2𝐻(𝑗𝜔0)

The frequency response of the system to a periodic input of frequency 
𝜔 can be found via 𝑯 𝒋𝝎
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STABILITY & FREQUENCY 
RESPONSE
𝑌𝑓𝑜𝑟𝑐𝑒𝑑 𝑠 =

𝑀

𝑠 + 𝑗𝜔0
+

ഥ𝑀

𝑠 − 𝑗𝜔0
=
(𝑠 − 𝑗𝜔0 − 𝑠 − 𝑗𝜔0)

𝑗𝐴
2𝜔0

𝐻(𝑗𝜔0)

𝑠2 + 𝜔0
2

=
𝐴

𝑠2 + 𝜔0
2𝐻(𝑗𝜔0)

Employing inverse Laplace transform:

𝑦𝑓𝑜𝑟𝑐𝑒𝑑 𝑡 = 𝐴 𝐻 𝑗𝜔0 ⋅ cos(𝜔0 + ∠𝐻(𝑗𝜔0))
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By varying the input sinusoidal 

frequency 𝜔0, we may easily 

recover the frequency response 

of the system.



Frequency-response
• Frequency-response: steady-state response of 

systems to sinusoidal inputs
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◼ The figure compares 

the output response of 

a system with a 

sinusoidal input

◼ Both the magnitude

and the phase shift of a 

system will change with 

the frequency of the 

input into the system Input

Output



LOGARITHMIC SCALE:
DECIBELS

dB = 20 log10 𝑙𝑖𝑛𝑒𝑎𝑟

𝑙𝑖𝑛𝑒𝑎𝑟 = 10
𝑑𝐵
20
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WHY 20 LOG10

Why 20 log10 ?

Usually we have dB = 10 log10(
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
) for power measurements

In electrical circuits:

𝑃 =
𝑈2

𝑅
= 𝐼2𝑅

𝑃 ~ 𝑈2, 𝐼2

We usually check voltage and current as our inputs and outputs, and that’s 
typically what we measure. (Remember our RC low pass example)

So we have dB = 10 log10(
𝑈𝑜𝑢𝑡
2

𝑈𝑖𝑛
2 ) = 20 log10(

𝑈𝑜𝑢𝑡

𝑈𝑖𝑛
)
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𝐿 𝑠

For rational functions:

𝐿 𝑠 = 𝐾0
𝑠 + 𝑎 𝑠 + 𝑏

𝑠 + 𝑐 𝑠 + 𝑑
= 𝐾0

𝑐𝑑

𝑎𝑏

𝑠
𝑎
+ 1

𝑠
𝑏
+ 1

𝑠
𝑐
+ 1

𝑠
𝑑
+ 1

= 𝐾Gain

𝑠
𝑎
+ 1

𝑠
𝑏
+ 1

𝑠
𝑐
+ 1

𝑠
𝑑
+ 1

, 𝐾Gain = 𝐾0
𝑐𝑑

𝑎𝑏

Working in logarithmic allows us to transfer multiplication and division into 
addition and subtraction:

20 log10𝐾Gain + 20 log10
𝑠

𝑎
+ 1 + 20 log10

𝑠

𝑏
+ 1 − 20 log10

𝑠

𝑐
+ 1

− 20 log10
𝑠

𝑑
+ 1
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𝐿 𝑗𝜔 - THE EFFECT OF POLES 
AND ZEROS

For rational functions:

𝐿 𝑗𝜔 = 𝐾Gain

𝑠
𝑎
+ 1

𝑠
𝑏
+ 1

𝑠
𝑐
+ 1

𝑠
𝑑
+ 1

, 𝐾Gain = 𝐾0
𝑐𝑑

𝑎𝑏

Behavior of 𝑧(𝑠) =
𝑠

𝑎
+ 1 , with s = 𝑗𝜔 : 𝑧 𝑠 =

𝜔2

𝑎2
+ 1

when 𝜔 ≪ 𝑎, ȁ𝑧(𝑠)ȁ → 1;

when 𝜔= a, ȁ𝑧 𝑠 ȁ → 2;
when 𝜔 ≫ 𝑎, ȁ𝑧(𝑠)ȁ → ∞;

Behavior of p 𝑠 =
1

𝑠

𝑐
+1

𝑐(𝑐−𝑗𝜔)

𝜔2+𝑐2
: 𝑝 𝑠 =

𝑐

𝜔2+𝑐2
𝜔2 + 𝑐2

when 𝜔 ≪ 𝑐, ȁ𝑝(𝑠)ȁ → 1;

when 𝜔 = 𝑐, 𝑝 𝑠 →
2

2
;

when 𝜔 ≫ 𝑐, ȁ𝑝(𝑠)ȁ → 0;

15

Denominator (where 

poles of L(s))

s = 𝑗𝜔

Numerator (where 

zeros of L(s))



𝐿 𝑗𝜔 - THE EFFECT OF POLES 
AND ZEROS

Behavior of 𝑧(𝑠) =
𝑠

𝑎
+ 1 , with s = 𝑗𝜔 : 𝑧 𝑠 =

𝜔2

𝑎2
+ 1

when 𝜔 ≪ 𝑎, ȁ𝑧(𝑠)ȁ → 1;

when 𝜔 = a, ȁ𝑧 𝑠 ȁ → 2;
when 𝜔 ≫ 𝑎, ȁ𝑧(𝑠)ȁ → ∞;

Behavior of p 𝑠 =
1

𝑠

𝑐
+1

𝑐(𝑐−𝑗𝜔)

𝜔2+𝑐2
: 𝑝 𝑠 =

𝑐

𝜔2+𝑐2
𝜔2 + 𝑐2

when 𝜔 ≪ 𝑐, ȁ𝑝(𝑠)ȁ → 1;

when 𝜔 = 𝑐, 𝑝 𝑠 →
2

2
;

when 𝜔 ≫ 𝑐, ȁ𝑝(𝑠)ȁ → 0;
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Decreasing how fast when 𝜔 ≫ 𝑎?
1

𝜔2

𝑎2
+1

≈
1
𝜔

𝑎

≈
𝑎

𝜔
, 

20 log10
𝑎

𝜔
= 20 log10 𝑎 − 20 log10 𝜔

Rate of change: -20 dB

s = 𝑗𝜔

Increasing how fast when 𝜔 ≫ 𝑎?

𝜔2

𝑎2
+ 1 ≈

𝜔

𝑎
, 

20 log10
𝜔

𝑎
= 20 log10 𝜔 − 20 log10 𝑎

Rate of change: 20 dB



∠𝐿 𝑗𝜔
For rational functions:

𝐿 𝑗𝜔 = 𝐾Gain

𝑠
𝑎
+ 1

𝑠
𝑏
+ 1

𝑠
𝑐
+ 1

𝑠
𝑑
+ 1

, 𝐾Gain = 𝐾0
𝑐𝑑

𝑎𝑏

∠𝐿 𝑠 = ∠
𝑠

𝑎
+ 1 + ∠

𝑠

𝑏
+ 1 − ∠

𝑠

𝑐
+ 1 − ∠

𝑠

𝑑
+ 1
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For the phase of 𝑧 𝑗𝜔 = 1 + 𝑗
𝜔

𝑎

when 𝜔 ≪ 𝑎,∠𝑧 𝑠 → 0𝑜 ;
when 𝜔 = 𝑎,∠𝑧 𝑠 → 45𝑜 ;
when 𝜔 ≫ 𝑎,∠𝑧(𝑠) → 90𝑜;

For the phase of p 𝑗𝜔 =
𝑐2

𝜔2+𝑐2
− 𝑗

𝜔𝑐

𝜔2+𝑐2

when 𝜔 ≪ 𝑎, ∠ 𝑝 𝑠 → 0𝑜 ;
when 𝜔 = 𝑎, ∠𝑝 𝑠 → −45𝑜 ;
when 𝜔 ≫ 𝑎, ∠𝑝(𝑠) → −90𝑜;



∠𝐿 𝑗𝜔 - THE EFFECT OF L 𝒔
POLES AND ZEROS

For rational functions:

𝐿 𝑗𝜔 = 𝐾Gain

𝑠
𝑎
+ 1

𝑠
𝑏
+ 1

𝑠
𝑐
+ 1

𝑠
𝑑
+ 1

, 𝐾Gain = 𝐾0
𝑐𝑑

𝑎𝑏
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For the phase of 

𝑧 𝑗𝜔 = 1 + 𝑗
𝜔

𝑎

when 𝜔 ≪ 𝑎, 𝑧 𝑠 → 0𝑜 ;
when 𝜔 = 𝑎, 𝑧 𝑠 → 45𝑜 ;
when 𝜔 ≫ 𝑎, 𝑧(𝑠) → 90𝑜;

For the phase of 

p 𝑗𝜔 =
𝑐2

𝜔2+𝑐2
− 𝑗

𝜔𝑐

𝜔2+𝑐2
:

when 𝜔 ≪ 𝑎, 𝑧 𝑠 → 0𝑜 ;
when 𝜔 = 𝑎, 𝑧 𝑠 → −45𝑜 ;
when 𝜔 ≫ 𝑎, 𝑧(𝑠) → −90𝑜;

𝑧 𝑗𝜔
𝝎 ↑

im=re

s = ja

45o

𝑝 𝑗𝜔
𝝎 ↑

im=-re

s = ja

−45o



POLE ZERO FREQUENCY EFFECT
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𝑳 𝒔

Log scale

Poles of  𝐋 𝒔 (𝐬 = −𝑝)
1

𝑠
𝑝 + 1

Zeros of 𝐋 𝒔 (𝐬 = −𝒛)

𝑠

𝑧
+ 1

Magnitude Subtraction
(Suppress 𝜔 > 𝑝)

Addition
(Boost 𝜔 > 𝑧)

Phase Clockwise 90o Counter Clockwise 
90o



POLE ZERO FREQUENCY EFFECT
𝑳 𝒔

Log scale

Poles of  𝐋 𝒔 (𝐬 = −𝑝)
1

𝑠
𝑝 + 1

Zeros of 𝐋 𝒔 (𝐬 = −𝒛)

𝑠

𝑧
+ 1

Magnitude Subtraction
(Suppress 𝜔 > 𝑝)

Addition
(Boost 𝜔 > 𝑧)

Phase Clockwise 90o Counter Clockwise 
90o
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POLE ZERO FREQUENCY EFFECT
𝑳 𝒔

Log scale

Poles of  𝐋 𝒔 (𝐬 = −𝑝)
1

𝑠
𝑝 + 1

Zeros of 𝐋 𝒔 (𝐬 = −𝒛)

𝑠

𝑧
+ 1

Magnitude Subtraction
(Suppress 𝜔 > 𝑝)

Addition
(Boost 𝜔 > 𝑧)

Phase Clockwise 90o Counter Clockwise 
90o
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source: Graphical Interpretation of Poles and Zeros

https://pages.mtu.edu/~tbco/cm416/PolesAndZeros.html


Bode diagram
.
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Bode diagram H(𝑗𝜔) =
1
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.
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w = 1

change at corner frequency



Bode diagram H(𝑗𝜔) =
1

1+𝑡𝑠
.

28

-40

-35

-30

-25

-20

-15

-10

-5

0

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/s)

t 𝑗𝜔 + 1

0

w = 1/t

0

-90

-45



Bode diagram H(𝑗𝜔) =
𝐾

1+𝑡𝑠
.
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Bode diagrams examples
• Bode diagram for a constant gain; K = 10

30



Bode diagrams examples
• Bode diagram for poles and zeros at the origin

Slopes -20 dB/dec and +20 dB/dec
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Bode diagrams examples
• Bode diagram for nonzero real poles and zeros

32

◼ Questions:

❑ What are the break (or corner) frequencies? 10 Hz

❑ What are the slopes of the two magnitude plots? +/- 20dB/dec

❑ What are the limits of the phase angles as w→? +/- 90 degrees

100



Bode diagrams examples
• Bode diagram for nonzero real poles and zeros
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Bode diagrams examples
• Bode diagram for nonzero real poles and zeros
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Zero



Bode diagrams examples
• Bode diagram for nonzero real poles and zeros

35

Zero Pole



36
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Bode plots example: 
additive relationship in log scale
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Bode plots example: 
additive relationship in log scale

0.22

3 0.2

0.25 0.33



Bode diagrams examples
Bode diagram for complex poles and zeros

• Consider poles or zeros of the form

2

00

2 2 ww ++ ss

38

◼ For β<1 → Complex poles and zeros

◼ Straight-line approximations may be very inaccurate for 

some value of damping ration

2

00

2 2 ww ++ ssAlso written as:



Bode diagrams examples
Bode diagram for complex poles and zeros 2

00

21)( 









++=

ww


ss
sG

39

To be precise the lowest value for the magnitude is at w = w0sqrt(1-2), see Ogata p. 422

Peak is roughly at w = w0



Bode diagrams examples
Effect on damping ration in the transient 
response of the system

𝐺(𝑠) = 1 + 2𝜁
𝑠

𝜔0
+

𝑠

𝜔0

2
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undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1)



POLE ZERO FREQUENCY EFFECT
𝑳 𝒔

Log scale

Poles of  𝐋 𝒔 (𝐬 = −𝑝)
1

𝑠
𝑝 + 1

Zeros of 𝐋 𝒔 (𝐬 = −𝒛)

𝑠

𝑧
+ 1

Magnitude Subtraction
(Suppress 𝜔 > 𝑝)

Addition
(Boost 𝜔 > 𝑧)

Phase Clockwise 90o Counter Clockwise 
90o
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POLE ZERO FREQUENCY EFFECT
𝑳 𝒔

Log scale

Poles of  𝐋 𝒔 (𝐬 = −𝑝)
1

𝑠
𝑝 + 1

Zeros of 𝐋 𝒔 (𝐬 = −𝒛)

𝑠

𝑧
+ 1

Magnitude Subtraction
(Suppress 𝜔 > 𝑝)

Addition
(Boost 𝜔 > 𝑧)

Phase Clockwise 90o Counter Clockwise 
90o
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POLE ZERO FREQUENCY EFFECT

43

𝐻 𝑠 =
1

𝑠2 + 1



CLOSED LOOP STABILITY

The closed loop transfer function:

𝐶𝐿𝑇𝐹 =
𝐿(𝑠)

1 + 𝐿(𝑠)

We do not want:

𝐶𝐿𝑇𝐹 → ∞
𝐿 𝑠 ≠ −1

44

H(𝑠)G(𝑠)
Reference 

set point

Outputerror+

-



𝑳 𝒔 ≠ −𝟏
WHAT DOES THIS MEAN ???

When:
𝐿(𝑠) = −1

We can infer:

1. 𝑳(𝒔) = 𝟏
2. ∠𝑳 𝒔 = −𝟏𝟖𝟎°
Thus:

When magnitude is at 𝑳(𝒔) = 𝟏, 
phase ∠𝑳 𝒔 should not pass −𝟏𝟖𝟎°

When phase ∠𝑳 𝒔 is just at −𝟏𝟖𝟎°, 
magnitude 𝑳(𝒔) should not reach 𝟏(0dB) or higher. 

45

Before 180° phase, you should start suppressing your magnitude (signal). 

Margin: How much more gain could you add to your system. 

How much phase (time) do you have to suppress your signal till you 

reach 180° in phase. 



𝑳(𝒔) = 𝟏, ∠𝑳 𝒔 = −𝟏𝟖𝟎°

When magnitude is at 𝑳(𝒔) = 𝟏, 
phase ∠𝑳 𝒔 should not pass −𝟏𝟖𝟎°

When phase ∠𝑳 𝒔 is just at ±𝟏𝟖𝟎°, 
magnitude 𝑳(𝒔) should not reach 𝟏(0dB) or higher. 

46

Before 180° phase, you should start suppressing your magnitude (signal). 

Margin: How much more gain could you add to your system until unstable. 

How much phase (time) do you have to suppress your signal till you reach 

− 1(magnitude = 1 = ȁ − 1ȁ) . So when magnitude reaches 1, you should 

already passed the −𝟏𝟖𝟎° phase.

Gain Margin(GM):

20log10GM = 20 log10 1 − 20 log10 𝐿 𝑠 when∠𝑳 𝒔 = −𝟏𝟖𝟎°

Phase Margin(PM):

PM = −𝟏𝟖𝟎° − ∠ 𝑳 𝒔 when 𝐿 𝑠 = 𝟏



Stability margin and Matlab

Matlab:
>> sys=tf(5,[1 6 5 0]), margin(sys)
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Bode Diagram

Gm = 15.6 dB (at 2.24 rad/sec) ,  Pm = 43.2 deg (at 0.779 rad/sec)

Frequency  (rad/sec)

phase margin Pm

Minimum values 

requirement are often:

6 dB  < Gm < 8 dB

45º < Pm < 65º

Of course, larger 

margins are safer.

gain margin Gm
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Gain Margin 19.2 dB

Phase Margin 43 deg
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Decreased K >> 

Larger GM and PM
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𝐿(𝑗𝜔) is so important

Why don’t we plot it?

𝐿(𝑗𝜔) is a complex function 

about 𝜔

3D plot
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Source:
Control Strategies for
Series Elastic, Multi-
Contact Robots, 
Gary Thomas, 2019,
doctorale dissertation, 
University of Texas Austin
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We care about amplitude and 

angle of the transfer function.

So for convenience we project 

the 3D plot to 2D plot in the 

complex plane for 𝐿(𝑗𝜔)



Nyquist plot
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A Nyquist plot shows on the complex plane the real

part of a frequency response function against its 

imaginary part with frequency as an implicit variable.
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The Nyquist plot works with the open loop transfer

Substitute 

𝐾𝐺 𝑠 𝐻 𝑠 =
𝐾

𝑠 + 1

𝑠 = 𝑗𝜔

Multiply with the complex conjugate to separate 

real and imaginary parts 

To look at the forced response 



Stability margins in the Nyquist plot
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GM: gain margin is the distance to |KG(jw)H(jw)| = 1 for a phase of -180o

PM:  phase margin is the distance to a phase of -180o  for |KG(jw)H(jw)| = 1

Im-axis

Re-axis

1
-1

phase margin PM

gain margin:         
1

𝐺𝑀

As gain increase

𝐿 𝑠 = KG(jw)H(jw)



Stability margins in the Nyquist plot
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GM: gain margin is the distance to |KG(jw)H(jw)| = 1 for a phase of -180o

PM:  phase margin is the distance to a phase of -180o  for |KG(jw)H(jw)| = 1

Im-axis

Re-axis

1

KG(jw)H(jw)

-1

phase margin PM

gain margin:         
1

𝐺𝑀



Nyquist plot
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The changes of the complex value of KG(jw)H(jw) 

gives a shape in the complex plane, and this shape is 

the Nyquist plot.
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Nyquist plot
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The shape of the Nyquist plot changes with different 

parameter settings of the controller
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Nyquist plot
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𝐾𝐺 𝑗𝜔 𝐻 𝑗𝜔 =
𝐾

𝜔2 + 1
− 𝑗

𝐾𝜔

𝜔2 + 1

Our open loop transfer function is now written in a 

real and an imaginary part

plotting our open loop transfer function on the 

complex plane while increasing w from -∞ to +∞ will 

result in the Nyquist plot.

For 𝜔 = −∞ → 𝐾𝐺 −𝜔 𝐻 −𝜔 = 0 − 𝑗0
For 𝜔 = +∞ → 𝐾𝐺 +𝜔 𝐻 +𝜔 = 0 − 𝑗0

For 𝜔 = 0 → 𝐾𝐺 0 𝐻 0 = 𝐾 − 𝑗0

−∞ and +∞
Are at the same 

point closing 

the contour



Cauchy’s principle of argument
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A contour map of a complex function, for example the function 
KG(jw)H(jw), will encircle the origin 
[Z – P] times, where Z is the number of zeros and P the number 
of poles of the function inside the contour.

To find out if our system is stable we are going to 

look for poles and zeros in the right half plane RHP.
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Mapping:

Cauchy’s principle of argument: Mapping by F(s)

A. V. Oppenheim, A. S. 

Willsky with S. H. 

Nawab, Signals & 

Systems, 2nd ed., 

Prentice Hall, 1997, 

page 849 



62

To find out if our system is stable we are going to 

look for poles and zeros in the right half plane RHP.

Mapping:

Cauchy’s principle of argument: Mapping by F(s)

𝒔
Im (s)

Re (s)

𝑭(𝒔)

F



CLOSED LOOP STABILITY

Open Loop transfer function

𝐿 𝑠 =
𝑁(𝑠)

𝐷(𝑠)

Closed Loop transfer function
𝐿 𝑠

1 + 𝐿 𝑠
=

𝑁(𝑠)

𝐷 𝑠 + 𝑁(𝑠)
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CLOSED LOOP TF 
POLES AND ZEROS

We were working with open loop transfer function 

𝑂𝐿𝑇𝐹 = 𝐺(𝑠)𝐻(𝑠) = 𝐾
𝑁(𝑠)

𝐷(𝑠)
The closed loop transfer function:

𝐶𝐿𝑇𝐹 =
𝐺(𝑠)𝐻(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
=

𝐾
𝑁(𝑠)
𝐷(𝑠)

1 + 𝐾
𝑁(𝑠)
𝐷(𝑠)

=
𝐾𝑁(𝑠)

𝐷(𝑠) + 𝐾𝑁(𝑠)

POLES MOVE!
ZEROS STAYS!

64

After this slide we looked at 

Root Locus



𝑦 = 𝑥 + 1
0,1 , −1,0 , (−2,−1)

𝛾 = 𝑦 + 1 = 𝑥 + 2
0,2 , (−1,1), −2,0

𝛾 is just y shifted 1 unit to the left

CLOSED LOOP STABILITY
OLTF: 𝐿 𝑠 = 𝐾

𝑁(𝑠)

𝐷(𝑠)
, CLTF:

𝐿 𝑠

1+𝐿 𝑠
=

𝐾𝑁(𝑠)

𝐷 𝑠 +𝐾𝑁(𝑠)

Observation: 1 + 𝐿 𝑠

1 + 𝐿 𝑠 =
𝐷 𝑠 + 𝐾𝑁(𝑠)

𝐷(𝑠)

Zeros of L(s) are the closed loop zeros
Poles of L(s) are the 1+L(s) poles
Zeros of 1+L(s) are the closed loop poles
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CLOSED LOOP STABILITY
Zeros of L(s) are the closed loop zeros
Poles of L(s) are the      1+L(s) poles
Zeros of 1+L(s) are the closed loop poles
Looking at properties of 1+L(s) in Nyquist plot of L(s):

Number of CW encirclement of L(s) at -1 = 
{number of zeros of 1+L(s) – number of poles of 1+L(s)}.

Closed loop stability requirement: 
no CLTF poles in RHP
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CLOSED LOOP STABILITY
Zeros of L(s) are the closed loop zeros
Poles of L(s) are the      1+L(s) poles
Zeros of 1+L(s) are the closed loop poles
Looking at properties of 1+L(s) in Nyquist plot of L(s):
Number of CW encirclement of Nyquist plot of L(s) at -1 

= {number of zeros of 1+L(s) in RHP 
– number of poles of 1+L(s) in RHP}.

Closed loop stability requirement: 
no CLTF poles in RHP
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CLOSED LOOP STABILITY
Zeros of L(s) are the closed loop zeros
Poles of L(s) are the      1+L(s) poles
Zeros of 1+L(s) are the closed loop poles
Looking at properties of 1+L(s) in Nyquist plot of L(s):
Number of CW encirclement of Nyquist plot of L(s) at -1 

= {number of zeros of 1+L(s) in RHP 
– number of poles of 1+L(s) in RHP}.

Closed loop stability requirement: 
no CLTF poles in RHP

Zeros of 1+L(s) – Poles of L(s) = 

No. CW encirclement at -1
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CLOSED LOOP STABILITY

Zeros of 1+L(s) – Poles of L(s) = No. CW encirclement at -1

We don’t want poles in the RHP.

Zeros of 1+L(s) = 

Poles of L(s) + No. CW encirclement at -1

Nyquist stability criterion

Z = P + N
Closed loop stable iff Z=0

69

(CLTF Poles)

(OLTF Poles) (Nyquist plot characteristic)



CLOSED LOOP STABILITY

Zeros of 1+L(s) – Poles of L(s) = No. CW encirclement at -1

We don’t want poles in the RHP.

Zeros of 1+L(s) = 

Poles of L(s) + No. CW encirclement at -1

Nyquist stability criterion

Z = P + N
Closed loop stable iff Z=0

Equivalent to N = -P
70

(CLTF Poles)

(OLTF Poles) (Nyquist plot characteristic)



Nyquist stability criterium
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D(s) = 1 + KG(s)H(s) = 0               KG(s)H(s) = -1       

the closed-loop system is unstable if Z > 0

𝑍𝑅𝐻𝑃 = 𝑁𝐶𝑊𝐸+ 𝑃𝑂𝐿_𝑅𝐻𝑃

𝑍𝑅𝐻𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑙𝑓 𝑃𝑙𝑎𝑛𝑒

𝑁𝐶𝑊𝐸 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑜𝑐𝑘 𝑊𝑖𝑠𝑒 𝐸𝑛𝑐𝑖𝑟𝑐𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 − 1 + 𝑗0

𝑃𝑂𝐿_𝑅𝐻𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑝𝑒𝑛 𝐿𝑜𝑜𝑝 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑙𝑓 𝑃𝑙𝑎𝑛𝑒

Why encircle the point -1+j0?

If encirclements are in the counterclockwise direction, NCWE is negative

The POL_RHP is not shown in the Nyquist plot but is found from then 

transfer function

Observe the Nyquist plot 



NYQUIST & BODE 
VS 
ROOT LOCUS

From root locus there is another famous stability test that is 
convenient called Routh-Hurwitz stability criterion.

We can not deal with time delay in Root Locus. 
Root Locus only deal with rational functions with 
polynomials on both numerators and denominators.

We do have an approximation method, called Pade’s
approximation. By Taylor’s series expansion, we may approximate 
𝑒−𝑠𝑇 to the form:

𝑒−𝑠𝑇 ≈ 𝐾
𝑠 + 𝑝

𝑠 + 𝑞
= −1

𝑠 −
2
𝑇

𝑠 +
2
𝑇
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NYQUIST & BODE 
VS 
ROOT LOCUS

Nyquist & bode plots, work with all 𝑳(𝒔).

We only need magnitude and phase,
𝑳 𝒔 , ∠𝑳 𝒔

And the open loop
With 𝑠 = 𝑗𝜔 and experimental measurement, 
sometimes without explicitly knowing the transfer 
function,
we may infer the stability of the system! 
(The open loop poles you can read from Bode plots)

73



NYQUIST & BODE 
VS 
ROOT LOCUS

When to use what?

Root Locus: Design
When you have a open loop transfer function and would like 
to design a system and determine the adequate controller 
gain K.

Bode & Nyquist: Evaluation
You already have the controller and gain parameter K or just 
an overall unknown open loop system, you would like to see 
if the closed loop system is stable or not. And evaluate the 
robustness of your system: gain margin & stability margin. 74


