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STABILITY L(s)
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For stability:
the poles should not go across the imaginary axis such that the
real part is larger than zero!
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We bring back our standard closed loop transfer function.
Characteristic equation:

1+ L(s)=0, L(s) = KG(s)H(s)
Poles s = p should satisfy: L(s) = —1. The polar form:
IL(s)|L(s) =1 eI

In the Root Locus exercise, we have looked at K, but what about
frequency and phase?
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Periodic
function

consider the system below. (Hit start button to show animation)
Click here for an animation of an analogous elecirical system.
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Animation by Ames Bielenberg
input to system, y=output (the position of the mass):
Y
H(s) - (s) _ k _ 1.6
v U(s) ms®+bs+k s°+0.55+1.6
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Periodic input!
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There exist a frequency w.
Let’s just assume input is x(t) = A sin(wt) ast = 0.
In s-domain we have output:

A
Y(s) =X(s)H(s) = SZ-I——a)ZH(S)

To find the frequency response, we force the real partofs: o0 = 0
And thuss = jw.

R The frequency response of the system can be discovered by H (jw).
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Periodic input!
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There exist a frequency w.
Let’s just assume input is x(t) = A sin(wyt) ast = 0.

In s-domain we have output:

A
Y(s) = X(s)H(s) = Sz—ZH(S)

+ w

To find the frequency response, we force the real partofs: 0 =0
Andthuss = jw.

N The frequency response of the system can be discovered by H (Jw).
But can we do this???
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Periodic input!
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There exist a frequency w.
Let’s just assume input is x(t) = Asin(wt) ast = 0.

In s-domain we have output:

A
Y(s) =X(s)H(s) = Sz—ZH(S)

+ wy

Steady-state Transient-state
(forced) response (natural) response
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We do partial fraction decomposition to Y (s):

Y(s) =X(s)H(s) =

v

{H(s) decomposition}

D=0
o
wig
23
2
==

Based on the uniqueness of Laurent series, M is the coefficient of

S+jwg
in the Laurent series expansion of Y(s) about the singularity point s =

—jwy -

Then we may conveniently utilize the residue theorem:
M = Res(Y(s), —jwy)

= —jw is a simple root, thus assume H(s) = %,
A-P(—jwg)
M = Res(Y(s), —jwg) =
Y 7190) = T2l ;

dS |S:—j(l)0
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We do partial fraction decomposition to Y (s):

v

OF APPLIED SCIENCES

>
=
n:
1
Ww:
>
Z
=1

Similarily,

A-P(jwy) AP(jwy)

d(?+0D)Q()| " 2jwoQ(iwo)
ds s=jwo

N = Res(Y(s),jwg) =
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We do partial fraction decomposition to Y (s):
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We look at the forced response:

M M _ JA /-
onrced(S) = stjog + —jwy M = ZwOH(]wO)
M M (s —Jjwo — J(UO) H(I(Uo)
onrced(S) = — + : =
S+jwg S—jwg s + wh
A
= sH(jw
52+ w? (j@o)

The frequency response of the system to a periodic input of frequency
w can be found via H(jw)
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(s = jwo = 5 = jwo) 3o~ H(jwo)
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s2 + wh

Employing inverse Laplace transform:

yforced(t) - AlH(in)l : COS((‘)O + LHU“)O))

LIF(0)] = f F(Oestdt
0

From CONVOLUTION to MULTIPLICATION

t
£+ g(0) = J; F@g(t - 1) dr

With Laplace transform:

f(t) * g(t) < F(s)G(s)

Convolution in t-domain in becomes multiplication in s-domain.

By varying the input sinusoidal
frequency wy, we may easily
recover the frequency response
of the system.
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@ Frequency-response

* Frequency-response: steady-state response of
systems to sinusoidal inputs

Phase Shlft_,| -
s The figure compares 1.5

the output response of
a system with a
sinusoidal input
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OF APPLIED SCIENCES

s Both the magnitude 1.5
and the phase shiftofa ° v % 30
system will change with

Amplitude Ratio=B/ A
the frequency of the
input into the system ~ ~=====- Input

1




LOGARITHMIC SCALE:
DECIBELS
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dB = 201log,, linear
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@ WHY 20 LOGq,

Why 20 10g10 7

out

Usually we have dB = 10 loglo( ) for power measurements
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In electrical circuits:
2

P = U— = I°R
==
P ~U?I?
We usually check voltage and current as our inputs and outputs, and that’s
typically what we measure. (Remember our RC low pass example)

So we have dB = 10 log (-2« "”t) = 20 loglo(uout)

ln
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|L(s)|

For rational functions:

v

G+a)s+b)  cd(z+1)(3+1)
(g: c)is(: d>; Tab (24 1)(3+1)
B | a+1 B+1 o ﬂ
_KGaln (%_I_l) (%_I_l); KGaln KO

ab
Working in logarithmic allows us to transfer multiplication and division into
addition and subtraction:

L(s) = K,
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S S S
2010810 Kgain + 20 log 1, ‘E + 1] + 201ogy ‘E +1| - 201ogy |E +1
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AND ZEROS

For rational functions:

S S

C+)G+)
Gain — Ih0

)G >

Behavior of z(s) = (2 + 1), withs = jw : |z(s)| = |5+ 1

L(iw) = Kgain
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when w < a,|z(s)| = 1;

when w = a, |z(s)| - V2; Numeraftﬁr (where
when w > a, |z(s)| = oo; zeros of L(s))

Behavior of p(s) = (§T11) s=je, M Ip(s)| = wziCZ\/a)Z + 2

c

when w < ¢, [p(s)| — 1; _
vz Denominator (where

when w = ¢, |p(s)| - ~ poles of L(s))
when w > ¢, [p(s)| = 0;

|L(jw)| - THE EFFECT OF POLES

15
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|L(jw)| - THE EFFECT OF POLES
AND ZEROS

Behavior of z(s) = (2 + 1), withs = jw : |z(s)| = (2—22 +1
whenw < a,|z(s)| = 1;
when w = a, |z(s)| = V2;
when w > a, |z(s)| = o;
S = c(c—jw
Behavior of p(s) = (_il) N (E)Z+]c2) Ip(s)| = \/wZ + c?
henw < ¢, [p(s)| = 1; Decreasing how fast when w > a?
rvhenw=c,lp(8)l—>§; 1 _ 1 _a
Yvhen W >C|p(s)] = 0 = == v = > wz T o™ w’
a

| a
¥ 201o -

Increasing how fast when w > a? o10 (a))

= 201log;0(a) — 201log;o(w)
w? w
/—2 +1=—,
¢ o Rate of change: -20 dB
201log; ( )
2| = 201log;(w) — 201ogq0(a)
Rate of change: 20 dB 16




ZL(jw)

For rational functions:

9
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/L(s) = 4(E+ 1) +4(E+ 1) —4(E+ 1) —4(E+ 1)
For the phase of z(jw) = 1 +j%
when w « a,2z(s) - 0° ;
when w = a,2z(s) - 45° ;
when w > a,2z(s) - 909;

L(ja)) = Kgain
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For the phase of p(jw) =

when w < a, 2 p(s) - 0° ;
when w = a, 2p(s) - —45°;

when w > a, £p(s) » —90°; o




£L(jw) - THE EFFECT OF L(s)
POLES AND ZEROS

For rational functions:

v
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52 L(/w) = Kgain (£+ 1): KGain = KO% Z(I(‘))
2§ c d
2
Do

For the phase of
z(jo) =1+~

when w < a, z(s) = 0° ;
when w = a, z(s) = 45° ;
when w > a, z(s) = 90°;

For the phase of
2
Pljw) = —— —j—

w?+c? w?+c?’

'EU%& when w < a, z(s) - 0° ;
§ when w = a, z(s) > —45°;
when w > a, z(s) - —90°;




POLE ZERO FREQUENCY EFFECT

v

L(s) Poles of L(s) (s = —p) Zeros of L(s) (s = —2)
1
Log scale S f+1
p Z

Magnitude  Subtraction Addition
(Suppress w > p) (Boost w > z)
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Phase Clockwise 90° Counter Clockwise
90°

z(jw)

w T
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POLE ZERO FREQUENCY EFFECT

v

>0 . d '
= Filter Example
ma I 5
ﬁ;m F(0.0)
Ww:o XGe)| 5t N
> 3 1
=< X(s)= . . .
S (s+2+j.5)(s+.2—j.5) o B & J
(poles at s=—2+j.5)
jo
X
c
X

S=jo

9/24/2018 Copyright © 2016, Dan Boschen 20




POLE ZERO FREQUENCY EFFECT
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source: Graphical Interpretation of Poles and Zeros



https://pages.mtu.edu/~tbco/cm416/PolesAndZeros.html

Bode diagram
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decibels (dB)
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Frequency rad/sec . )
logarithmic frequency

45

-45

-90

Phase angle degree

-135

-180

0,01 0,1 1 10 100

Frequency rad/sec 26




@ Bode diagram H(jw) =

/ change at corner frequency
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@ Bode diagram

Hjw) = —

Tjw + 1
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Magnitude (dB)

Phase (deg)

Bode Diagram
N
0 —————
w45
\
§§\\\
—_—
Frequen? (rad/s)

=1/t
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@ Bode diagram

S ITY

10(K)

Hjw) = —

Bode Diagram

Tjw + 1
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Bode diagrams examples
* Bode diagram for a constant gain; K=10
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19.5 e U 0 8 SO SRS . i

0.5 — b L SR RO SN NN L 5 0 W N o

Phase (deg); Magnitude (dB)

0

05 bbb b R L ]
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-1 0 2
10 10 10’ 10
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@ Bode diagrams examples

 Bode diagram for poles and zeros at the origin
Slopes -20 dB/dec and +20 dB/dec
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G(s)=1/s G(s)=s

Inte grator Diffe re ntiator
20 40
'hu..h‘ﬁ_‘__ |
q""'ﬂ-____‘_ .-'“"f
0 = 0 e
E -\-‘-\-H-‘-\"""h\.._\_\_‘___‘-\- __._‘__..-r""'-.r
2 Bnes 0 7
4 i mEs
?ﬁ H“""-\.___\_ -
E 40 m 0
=) .80 0
b
v §95 0.5
o
= |
B 00
005 0.5
91 1 0 1 2 B9 1 o 1
1] 10 10 10 1] 10 10

Frequency (mdfsec) Frequency (mdfsec)
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se (deg): Magnitude (dB)

Pha
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s Questions:

ode diagrams examples
* Bode diagram for nonzero real poles and zeros

o What are the break (or corner) frequencies? 10 Hz
o What are the slopes of the two magnitude plots? +/- 20dB/dec
o What are the limits of the phase angles as w—>%? +/- 90 degrees

G(s) = 10/(s+10)

Low-pass filler

N

P
F A

-100

s

A

Tk

10 10°
Frequency (radfsec)

G(s) = (s+10)/10

PD controller

Y
Y

10" 10" 10 ' 32



@ Bode diagrams examples

* Bode diagram for nonzero real poles and zeros
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@ Bode diagrams examples

* Bode diagram for nonzero real poles and zeros

&
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@ Bode diagrams examples

* Bode diagram for nonzero real poles and zeros

>0
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Bode plots example:

additive re

Magnitude [dB]

Phase [degrees]

ationship in log scale
: i
40 /"' . <
20 ey s e / \
0 db L eeeetertoiubbrecen
20
-40 '
180
90
—"J# \\\.‘
0 deZ frmmiusiale SN TSSOSO A M T
e
VRN R R R i
-180
107 10! 10° 10} 107 10°

Frequency [rad/s]

10*
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@ Bode plots example:
additive relationship in log scale

27s*+87s+18  18(3s+1)(is+1)
60s° +47s* +12s+1  (5s+1)(4s+1)(3s+1)

H(s)=

OF APPLIED SCIENCES
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Bode Diagram
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-133
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Bode diagrams examples

Bode diagram for complex poles and zeros

v

* Consider poles or zeros of the form

s +2Bwm,S+ @,

>0
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Also written as: 52 + 24/(003 + C()é

m For B<1 - Complex poles and zeros

m Straight-line approximations may be very inaccurate for
some value of damping ration
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Bode diagrams examples
Bode diagram for complex poles and zeros

& S S
£ G(s)=1+28—+| —
x5 @ A%
Ww:g " |
> Z
2 < f ==
Dis - f
nal -1}
5
= -50
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) 200 i i i
o 150 D 1 jﬁﬁﬁﬁjfﬁf
z : A=t e
—
- 100 Z a1 p= 1
» -
50 ff‘;?f/;
o
=/
0= = 1 >
10 |{1 10 a)’
| ~ @,
Peak is roughly at ® = o, 20

To be precise the lowest value for the magnitude is at ® = ®,sqrt(1-p2), see Ogata p. 422




Bode diagrams examples
Effect on damping ration in the transient

2
S S
response of the system G(s)=1+20— + (_)
Wo Wq
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2.0
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S 10
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0.5
0.0
R TR N U U MR NN S R M AR SR MR R P
0 T 2 3 4
w, t/rad

w undamped ( = 0), underdamped ({ < 1) through critically damped ({ = 1) to overdamped (¢ > 1)




POLE ZERO FREQUENCY EFEECT
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EC Filter Example
i
e 2
E |
E% K= (s+2+j5)(s+.2—j.5)
::O
(poles at s=—2+j.5)
jo
G

S=jo
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POLE ZERO FREQUENCY EFEECT
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(poles at s=—2+j.5)
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150

Magnitude (dB)
=
- - -

n
S

POLE ZERO FREQUENCY EFFECT
1

H(s) =
s+ 1
Bode Diagram
System: H

Frequency (rad/s): 1.01
Magnitude (dB): 37.3

. Sl
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CLOSED LOOP STABILITY

v

The closed loop transfer function:

L(s)
1+ L(s)

Reference T error Output
set point
l

We do not want:

CLTF =

D=0
o
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CLTF — oo

|:> L(s) +# -1




L(s) # —1
WHAT DOES THIS MEAN ???

v

£ S
ag When:
52 L(s) = -1
>S5 | Wecaninfer:
Z 2
2 | 1 |L(s)=1
2. ¢L(s) =-—180°
Thus:

When magnitude is at |L(s)| = 1,
phase 2L(s) should not pass —180°
Before 180° phase, you should start suppressing your magnitude (signal).
Margin: How much more gain could you add to your system.
When phase 2L(s) is just at —180°,
magnitude |L(s)| should not reach 1(0dB) or higher.

How much phase (time) do you have to suppress your signal till you

reach 180° in phase. e




IL(s)| =1, 2L(s) = —180°

v

When magnitude is at |L(s)| = 1,

phase 2L(s) should not pass —180°

Before 180° phase, you should start suppressing your magnitude (signal).
Margin: How much more gain could you add to your system until unstable.

>0

5 &
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Wn: =
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w:2
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Gain Margin(GM):
20log,,GM = 20log,y1 — 20logy|L(s) whensL(s) = —180°|

When phase 2L(s) is just at +180°,
magnitude |L(s)| should not reach 1(0dB) or higher.

How much phase (time) do you have to suppress your signal till you reach
— 1(magnitude = 1 =| —1]) . So when magnitude reaches 1, you should

Phase Margin(PM):
PM = (—180°) — £(L(s) when |L(s)| = 1)

46




>
=
0
e
Ww:
>
Z
=

7))
L
Q
=
.
U
N
o
w
hae
o
Q.
<
w
&)

Stability margin and Matlab

Minimum values
requirement are often:
6dB <Gm<8dB
45° < Pm < 65°

Of course, larger
margins are safer.

Magnitude (dB)

Phase (deg)

-150¢

-180

Matlab:
>> sys=tf(5,[1 6 5 0]), margin(sys)

Bode Diagram
Gm=15.6 dB (at 2.24 rad/sec) , Pm=43.2 deg (at 0.779 rad/sec)

50¢

E E T L EELE

gain margin Gm

n
S
I

-100 -

r

G i

r r rrrrrf r r r rrriref r r r rrrrrf r r r rrrrck

-90¢

-135 -

LLE LTk T 15 [ " S w2 15 T T L LLEEE

phase margin Pm ~

=225~

-270 &

r

r r rrrrrf r r r rrrrrf r r r rrrrrf r r r rrrref

10

-1 0 1
10 10 10 10

Frequency (rad/sec)
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Gain Margin 19.2 dB
Phase Margin 43 deg
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Decreased K >>
Larger GM and PM

0.001  0.01 0.1 ] 10 100

frequency L]




@ L(jw) IS SO Important
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Why don't we plot it?

L(jw) I1s a complex function
about w




3D Log Nyquist Plots — Visualization for Uncertain Models

Robust modelling volume

Helpful magnitude wraparound

Log frequency axis

-1 point

Complex plane
Real axis

Imaginarv axis

UNIVERSITY
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Source:

Control Strategies for
Series Elastic, Multi-
Contact Robots,

Gary Thomas, 2019,
doctorale dissertation,
University of Texas Austin

Real axis (log)

Log frequency axis




Observe
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HU&_J. 1‘}‘ killll'l"u' v

circle

We care about amplitude and
angle of the transfer function.

So for convenience we project
the 3D plot to 2D plot in the
complex plane for L(jw)




Nyquist plot

A Nyquist plot shows on the complex plane the real
part of a frequency response function against its
Imaginary part with frequency as an implicit variable.

The Nyquist plot works with the open loop transfer

UNIVERSITY
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K
KG(S)H(S) = S+—1

Substitute s =jw To look at the forced response

Multiply with the complex conjugate to separate
real and imaginary parts

K . Ko

o+l Vo 41

KG(jo)H (jo) = — (1~ jo)-

54




Stability margins in the Nyquist plot

v

GM: gain margin is the distance to |[KG(jw)H(j@w)| = 1 for a phase of -180°

PM: phase margin is the distance to a phase of -180° for |[KG(jo)H(jw)| = 1
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Im-axis
. . 1 G
gain margin: — L
GM - - - ~
P d ~
V \

/
As gain mcre;xSe

== —— == ==

\
: » Re-axis

L(s) = KG(jow)H(j )




Stability margins in the Nyquist plot

v

GM: gain margin is the distance to |[KG(jw)H(j@w)| = 1 for a phase of -180°

PM: phase margin is the distance to a phase of -180° for |[KG(jo)H(jw)| = 1

Im-axis

D=ild
=2
o
wio
2z
Z 3
ik

gain margin:

» Re-axis

KG(jo)H(jw)




Nyquist plot

The changes of the complex value of KG(jw)H(jw)
gives a shape in the complex plane, and this shape is
the Nyquist plot.

K

KG(jo)H (jw) = p +1(1— ja))z

K . Kw

o1 Vo 41
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Nyquist Diagram
0.5¢ T

Nyquist plot for K =1
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Nyquist plot

The shape of the Nyquist plot changes with different
parameter settings of the controller

Nyquist Diagram

Imaginary Axis
o
7

-1 -0.5 . 1.5
Real Axis
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Nyquist plot

Our open loop transfer function is now written in a
real and an imaginary part

K - Kw
w?+1 ]a)2+1

KG(jw)H(jw) =

UNIVERSITY
OF APPLIED SCIENCES

plotting our open loop transfer function on the
complex plane while increasing o from -co to +oo will
result in the Nyquist plot.
—oo and 4o
Forw = -0 - KG(—w)H(—w) = 0—j0 | Areatthe same
Forw = +0 - KG(+w)H(+w) = 0 — j0O | pointclosing
the contour

=0 - KG(0)H(0) = K — jO
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Cauchy’s principle of argument

To find out if our system is stable we are going to

wn . .
> look for poles and zeros in the right half plane RHP.
S 5 L(s) = _ 90 _ 90
n:s s?+9s+18 (s+3)(s+6)
x:wn
w:5
> - s-domain plot (w/ poles and zeros of L(s)) L{s)-domain plot (w/ the point -1 shown)); L{s)}=G(s)H(s)
- O +inf +inf -
= R Zoom in
z : <L 10 10
: 8 8 8
6 5}
4 4 3
2 o 2 4
5 IR T .5 Q
:
2 ) = 2 [
4 A 4
B -6
-8 -8
410 1 -10
M0 8 6 4 2 0 2 4 6 8 10 +inf Me0 8 6 4 2 0 2 4 B B 10 +nf
real(s) real( L{s) )

A contour map of a complex function, for example the function
KG(jw)H(jw), will encircle the origin

[Z — P] times, where Z is the number of zeros and P the number
of poles of the function inside the contour.




Cauchy’s principle of argument: Mapping by F(s)

s—1

v

Mapping: GH{s) = (s+1)(s2+s+1)
>0 i
b= ) dm
a é s-plane Cs GH -plane
O (D
g g X G(R,e V’ ®Re
Z: |
D5

(a)
9m s
s-plane GH -piane
=l . LIS
] ok LS o
(0
A. V. Oppenheim, A. S. o e
Willsky with S. H. Serfione GH-plane
» Nawab, Signals &
3 Systems, 2nd ed., /T o s
Prentice Hall, 1997, \L .
page 849 |




Cauchy’s principle of argument: Mapping by F(s)

To find out if our system is stable we are going to
look for poles and zeros in the right half plane RHP.

Mapping:

UNIVERSITY
OF APPLIED SCIENCES

S

Im (s) T,

F(s)
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CLOSED LOOP STABILITY

v

Open Loop transfer function

L(s) =

N(s)
D(s)

>0

2
=
Wn: =
e n
w:2
>
L <

- U
=0

Closed Loop transfer function
L(s) N(s)

1+ L(s) N D(s) + N(s)




CLOSED LOOP TF
POLES AND ZEROS

We were working with open loop transfer function

OLTF = G(s)H —KN(S)
= GOHE) =Ko

“‘Ei
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The closed loop transfer function:

N(s)

- _GOHE D) KN

1+ G(s)H(s) N(s) D(s)+ KN(s)
D(s)

POLES MOVE!
ZEROS STAYS!

=X After this slide we looked at
Root Locus

1+ K+=
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CLOSED LOOP STABILITY

| ., N(s) L(s) KN(s)
OLTF: L(s) = KD(S)' CI‘TF'1+L(s) [D(s)+KN(s)

Observation: 1 + L(s)

UNIVERSITY
OF APPLIED SCIENCES

D(s) + KN(s)

1+ L(s) =
(s) D(s)
Zeros of L(s) are the closed loop zeros
Poles of L(s) are the 1+L(s) poles
Zeros of 1+L(s) are the closed loop poles

y=x+1
(0,1),(—1,0),(—2,-1)

y=y+1l=x+2
(0,2),(—1,1),(—2,0)
Y is justy 1 unit to the left g8




CLOSED LOOP STABILITY

v

> Zeros of  L(s) are the closed loop zeros

Eg Poles of L(s) arethe 1+L(s) poles

$2 Zeros of  1+l(s)  aretheclosed loop poles
gg Looking at properties of 1+L(s) in Nyquist plot of L(s):

Number of CW encirclement of L(s) at -1 =
{number of zeros of 1+L(s) — number of poles of 1+L(s)}.

Closed loop stability requirement:
no CLTF poles in RHP
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CLOSED LOOP STABILITY

v

> Zeros of  L(s) are the closed loop zeros

zg Poles\\gf L(s) arethe 1+L(s) poles

5.8 [eros o 1+l(s)  aretheclosed logp-poles
gg:: Looking at propertles of 1+L(s) in Nyqur§t plot of L(s):

Number of CW encirclement of/Nqust plot of L(s) at -1

{numbén of zeros of 1+L(s) in RHP
— number of poles of 1+L(s) in RHP}.

I

Closed loop stability requil,’rement:
no CLTF'poles in RHP
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CLOSED LOOP STABILITY

Zeros of  L(s) are the closed loop zeros
Poles. of L(s) are the 1+L(s) poles
Zeros of. 1+L(s) are the closed Iooppoles
'L'é'é'li'l"rié'é'f'p'k'ébéﬁi'é's"6'f"Ii'[('é')"l'ﬁ"i\i'\?ij""w%t""ioiBf of L(s):
Number of CW encirclement ovaqwst plot of L(s) at -1

{numbén of zetos of 1+L(s) in RHP

— number of po\ILes of 1+L(s) in RHP}.

N
| N

UNIVERSITY
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N
| N

Closed loop stability requirem\ent
no CLTF "poles in RL—IP

Zeros of 1+L(s) — Poles of L(s) =

No. CW encirclement at -1
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CLOSED LOOP STABILITY

Zeros of 1+L(s) — Poles of L(s) = No. CW encirclement at -1
We don’t want poles in the RHP.

Zeros of 1+L(s) =
(CLTF Poles)

Poles of L(s) + No. cwW encirclement at -1
(OLTF Poles) (Nyquist plot characteristic)

Nyquist stability criterion

Z=P+N
Closed loop stable iff Z=0

UNIVERSITY
OF APPLIED SCIENCES
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CLOSED LOOP STABILITY

Zeros of 1+L(s) — Poles of L(s) = No. CW encirclement at -1
We don’t want poles in the RHP.

Zeros of 1+L(s) =
(CLTF Poles)

Poles of L(s) + No. cwW encirclement at -1
(OLTF Poles) (Nyquist plot characteristic)

Nyquist stability criterion

Z=P+N
Closed loop stable iff Z=0
Equivalentto N =-P

UNIVERSITY
OF APPLIED SCIENCES
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Nyquist stability criterium

Observe the Nyquist plot

Zrup = Newe™ Por_rup
the closed-loop system is unstable if Z>0

UNIVERSITY
OF APPLIED SCIENCES

Zpyp = Number of closed loop poles in the Right Half Plane

Ncwr = Number of Clock Wise Encirclements of the point — 1 + j0
Py rup = Number of poles of the Open Loop system in the Right Half Plane

If encirclements are in the counterclockwise direction, N.,,g IS negative

The Pg, gup Is NOt shown in the Nyquist plot but is found from then
transfer function

Why encircle the point -1+j0?
A(S) =1+ KG(S)H(S) =0 mmmmmmp KG(S)H(S) = -1
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NYQUIST & BODE
VS
ROOT LOCUS

From root locus there is another famous stability test that is
convenient called Routh-Hurwitz stability criterion.

v

OF APPLIED SCIENCES

>
=
n:
o
Ww:
>
Z
=1

We can not deal with time delay in Root Locus.
Root Locus only deal with rational functions with
polynomials on both numerators and denominators.

We do have an approximation method, called Pade’s
approximation. By Taylor’s series expansion, we may approximate
e 5T to the form:

2
o=5T ~ S+p=_1S—T
stq S+% 72




NYQUIST & BODE
VS
ROOT LOCUS

Nyquist & bode plots, work with all L(s).

v

OF APPLIED SCIENCES

>
=
n:
-4
Ww:
>
Z
=1

We only need magnitude and phase,
IL(s)| , <L(s)
And the open loop
With s = jw and experimental measurement,
sometimes without explicitly knowing the transfer
function,
oy, WE May infer the stability of the system!
X (The open loop poles you can read from Bode plots)
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NYQUIST & BODE
VS

v

>0

=

52 | ROOT LOCUS
'é‘% When to use what?
2

Sis

Root Locus: Design

When you have a open loop transfer function and would like
to design a system and determine the adequate controller
gain K.

Bode & Nyquist: Evaluation
You already have the controller and gain parameter K or just
. an overall unknown open loop system, you would like to see

§if the closed loop system is stable or not. And evaluate the
robustness of your system: gain margin & stability margin. 7




