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| would like to grab a bottle of water.
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| would like to grab a bottle of water.
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@ A SIMPLE CASE

| would like to grab a bottle of water.
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| list what | have to do.

| wrap my hand around the bottle.
| apply force.
| grab bottle.




OPEN LOOP CONTROL SYSTEM

v

bottle bottle
My brain My hand The bottle
27?7

| don’t know the force | need to apply,
| just grab,
| do not have my water.
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CLOSED LOOP CONTROL SYSTEM
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My brain The bottle
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My eyes and
skin

| don’t know the force | need to apply,
but | try, | feel, and | look,
| stop pressure when my hand apply just enough force,




THE STANDARD MODEL OF
A FEEDBACK CONTROL SYSTEM

Uncertainties
Disturbance Inherent Noise
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REAL WORLD EXAMPLE:
CRUISE CONTROL OF A BUS

Uncertainties
Road bump, heating, wear, passengers,
etc.

Compare Compute Car
sensor
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On-board computer )

—_—

“Feedback”




SIMPLE CLOSED LOOP CONTROL
WITH UNIT FEEDBACK

rrrrrr Output
Controller Process
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SIMPLE CLOSED LOOP CONTROL
WITH UNIT FEEDBACK
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Minus sign: negative feedback.
Plus sign: positive feedback

We only work with negative
feedback in this course.
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WITH OR WITHOUT FEEDBACK
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22 With feedback we can:
§§ . deal with system dynamics
2 < . be robust to uncertainty
= io :
. modular operation
. gain even more knowledge of environment

But the trouble feedback brings:

. increase complexity

. potential to bring unstable
. noise amplification
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TRANSFER FUNCTION

OUTPUT = INPUT * G(s)

OUTPUT

G(s) = NpUT

Blackbox
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TRANSIENT & STEADY

Transient state Steady state
>|€ >
(changing) (not changing)

1 | | | | 1 | I | i

—
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CONTROL
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(roughly explained)
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The process of design & implementing algorithms in
engineered target system to achieve a desired output or
system state.

Typically you control a system using controller & control
loops.




CONTROL
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When there is uncertainty,
apply control!




SYSTEM

v

Generally,
An object or a series of interacting objects(of your interest.
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In which you usually can discover:
* Input(s)
e Qutput(s)
* Object(s) as “building block(s)”
— The physical characteristics are crucial
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SYSTEM - BRAINSTORM

Is a large piece of metal on the ground a system?
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SYSTEMS -
SCOPE OF THIS COURSE

We only deal with:
Causal LTI SISO systems
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e Causal: output only depends on the past and present
(input), not the future

* L: Linear systems

e TI: Time-invariant

SISO: Single Input Single Output




CAUSAL LTI SISO SYSTEMS

v

i

55 Properties:

5§ Given a system that yields X4) = y(p)
>z 1. Homogeneity

2 <

D5

a-Xgp P a-Yo),x €R
2. Additive

Given X1 P Y1y X2 P Y2y We have:

(X1 +x2)_(£) » (1 +y2)_()
3. Time invariance
X(t+a) 7 Y(t+a)» @ €R
4. Causality
the system remains stationary before t,

(we almost always take t, = 0)
th#—' t2 and tl' t2 < tO , We have:

X(ty) = X(tp) and Ye) = Yty
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SYSTEMS: THE KEY TAKEOUT
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No matter how much we simplify,
we are working with physical systems.

The mathematical tools you see later,
are describing the characteristics of the physical system.

(REZRIEVERFESRNFE! )




STABILITY
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finite output

STABLE !
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STABILITY
(MATHEMATICAL DESCRIPTION)

Given a system h(t),

for h(t) to be stable, the impulse response of h(t)
should be absolutely integrable.

f |h()| dt < oo

In our case, for causal systems:

j |h(t)|dt < oo
0
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STABILITY - BIBO
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More formally we have:

@nded-lnput Bounded-Output (BIBO@

 Marginally stable
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finite input
* Conditionally stable

* Uniformly stable

* Asymptotically stable

Unstable >
finite output:




BEYOND STABILITY -
OTHER CHARACTERISTICS

e Robustness
* Sensitivity
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e Observability

e Controllability

* Reachability

e Stabilizability

* Reconstructability
e Detectability




@ MODELLING
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You have a physical system
You have learned some physics
Determine the input and output

Write the relevant equations

Derive the ODE

(Next step)

Solve it using Laplace transform
25



Modelling: Electric circuits

Kirchhoff's circuit laws deal with the conservation of charge and
energy in electrical circuits.

Kirchhoff's current law:
The current entering any junction is equal to the current leaving that
junction. i, + i3 =1; +1,

k=1
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Kirchhoff’s voltage law:
The sum of all the voltages around a loop is equal to zero.
Vi +V,+vy+v, =0

.a R, ® b
n Vi
E ‘/k — @ Vy R, <,
_ d R, c
Vi R,

Vs 26
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Modelling example: RC low-pass filter

This is a RC low-pass filter(LPF).
You have a voltage source U, .

You want to know U
RC-LPF.

You know R and C values. The initial
condition is O.

the voltage after the

out

What should you do?
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Modelling example: RC low-pass filter

G
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Circuit analysis!

Liotar = Ig = I¢
Upn =Ur +Uc = Ur + Upyt

1 (1t dU,
U-=—1| 1 dt =2 I = C—
C Cjo (T) T C dt
Ur
o UR=IRR:IR=?
Un _ 4V

R dt




@ Modelling example: RC low-pass filter
R

Y R

E L&L’j Uin C Uout
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Circuit analysis! -> Differential Equation!

Up dU, dU.
—=(C——>=> Up = RC——
R dt R dt

Un =Ur + Uput »Uc = Upyt

du, .,
 + Upys

= Uin = RC dr




ELECTRICAL SYSTEMS -
RLC CIRCUITS

v

>0
=
2 5
TTH
=i Voltage - Current
2%
D5
Resistor U(t) = I(t)R
1 1
Capacitor U(t) = Ef [(7) dt
0
dI(t
Inductor ut) =L ©®
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Modelling example: Mechanical system
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The force applied on mis F.
The velocity of mis v.

The displacement of mis x.

| pull the block m from sitting still, | want to
know how it moves, in this case velocity.

Input F
Output v




Modelling example: Mechanical system
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Analysis! Free body diagram.

) spring c

viscous damper
<

inertia
<<




Modelling example: Mechanical system
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Analysis! Free body diagram.

t
kx = ka(r)dr
- F

bv

< M
dv(t)

a = M—————
at




Modelling example: Mechanical system
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Write differential equation

dv(t)
dt

F(t) =k ] v(t)dt + bv(t) + m
0
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MECHANICAL SYSTEMS -
TRANSLATING SYSTEM

Damper

F=»b
(Viscous friction) v
t
Spring F = kjv(r)dr
0
Mass (Inertia) F = mdv(t)

35
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MECHANICAL SYSTEMS -
TRANSLATING SYSTEM

Damper o dx(t)
(Viscous friction) - dt
Spring F = kx
2
Mass (Inertia) = md x ()

dt?

36



SUMMARY
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i * We like: causal & linear systems

2
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e Open loop & closed loop control system
 “The standard model”

e Still changing? Transient
e Stop changing? Steady
e (BIBO) Stability

 Modelling physical systems with ordinary differential
equations.




HOMEWORK
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Read the lecture note:
Part 1 Introduction to fundamental concepts
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Try to solve exercise problems in section 1.6

Stage ONE exercise:
* Problem 5 (you can skip sub question 3 for now)
* Problem 8




