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A SIMPLE CASE

I would like to grab a bottle of water.
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A SIMPLE CASE

I would like to grab a bottle of water.

I list what I have to do.
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A SIMPLE CASE

I would like to grab a bottle of water.

I list what I have to do.

I wrap my hand around the bottle.
I apply force.
I grab bottle.
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OPEN LOOP CONTROL SYSTEM
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My brain My hand The bottle

I don’t know the force I need to apply,

I just grab,

I do not have my water.

Got 

bottle

???

Get 

bottle



CLOSED LOOP CONTROL SYSTEM
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My brain My hand The bottle

My eyes and 
skin

I don’t know the force I need to apply,

but I try, I feel, and I look,

I stop pressure when my hand apply just enough force,

I get my water.

Got 

bottle

!!!

Error
Get 

bottle



THE STANDARD MODEL OF
A FEEDBACK CONTROL SYSTEM
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REAL WORLD EXAMPLE:
CRUISE CONTROL OF A BUS
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On-board computer

Speed 
sensor

CarCompare Compute
Gas 

Pedal

Uncertainties
Road bump, heating, wear, passengers, 
etc. 

“Feedback”

V_ref V_true



SIMPLE CLOSED LOOP CONTROL
WITH UNIT FEEDBACK
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ProcessController
Reference 

set point

Outputerror+

-



SIMPLE CLOSED LOOP CONTROL
WITH UNIT FEEDBACK
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ProcessController
Reference 

set point

Outputerror+

-

Minus sign: negative feedback.

Plus sign: positive feedback

We only work with negative 

feedback in this course.



WITH OR WITHOUT FEEDBACK
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With feedback we can:
• deal with system dynamics
• be robust to uncertainty
• modular operation
• gain even more knowledge of environment

But the trouble feedback brings:
• increase complexity
• potential to bring unstable
• noise amplification



TRANSFER FUNCTION

𝑂𝑈𝑇𝑃𝑈𝑇 = 𝐼𝑁𝑃𝑈𝑇 ∗ 𝐺(𝑠)

𝐺 𝑠 =
𝑂𝑈𝑇𝑃𝑈𝑇

𝐼𝑁𝑃𝑈𝑇
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Blackbox
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TRANSIENT & STEADY

Steady stateTransient state

(changing) (not changing)



CONTROL
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(roughly explained)

The process of design & implementing algorithms in 
engineered target system to achieve a desired output or 
system state. 

Typically you control a system using controller & control 
loops.



CONTROL
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When there is uncertainty,
apply control!



SYSTEM
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Generally,
An object or a series of interacting objects of your interest.

In which you usually can discover:

• Input(s)

• Output(s)

• Object(s) as “building block(s)”

– The physical characteristics are crucial



SYSTEM - BRAINSTORM
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Is a large piece of metal on the ground a system?



SYSTEMS -
SCOPE OF THIS COURSE
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We only deal with:
Causal LTI SISO systems

• Causal: output only depends on the past and present 
(input), not the future

• L: Linear systems or systems that can be linearized

• TI: Time-invariant

• SISO: Single Input Single Output



CAUSAL LTI SISO SYSTEMS
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Properties:
Given a system that yields x 𝑡 ↦ 𝑦 𝑡

1. Homogeneity
𝛼 ⋅ x t ↦ 𝛼 ⋅ 𝑦 𝑡 , 𝛼 ∈ R

2. Additive
Given : x1 t ↦ 𝑦1 𝑡 ,  x2 t ↦ 𝑦2 𝑡 , we have:

𝑥1 + 𝑥2 _ 𝑡 ↦ 𝑦1 + 𝑦2 _ 𝑡
3. Time invariance

x 𝑡+𝑎 ↦ 𝑦 𝑡+𝑎 ,  𝑎 ∈ R

4. Causality
the system remains stationary before 𝑡0
(we almost always take 𝑡0 = 0)
∀ t1≠ t2 and t1, t2 < 𝑡0 , we have:
x t1 = x t2 and y t1 = y t2

\reals



SYSTEMS: THE KEY TAKEOUT
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No matter how much we simplify,
we are working with physical systems.

The mathematical tools you see later,
are describing the characteristics of the physical system.

（最重要的是物理系统自身的特性！）

\reals



STABILITY
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finite input

system

finite output

STABLE !



STABILITY 
(MATHEMATICAL DESCRIPTION)
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Given a system 𝒉(𝒕),

for 𝒉(𝒕) to be stable, the impulse response of 𝒉(𝒕)
should be absolutely integrable.

න

−∞

∞

|𝒉(𝒕)| 𝐝𝒕 < ∞

In our case, for causal systems:

න

𝟎

∞

|𝒉(𝒕)| 𝐝𝒕 < ∞



STABILITY – BIBO
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More formally we have:

• Bounded-Input Bounded-Output (BIBO) stable

• Marginally stable

• Conditionally stable

• Uniformly stable

• Asymptotically stable

• Unstable

finite input

system

finite output



BEYOND STABILITY -
OTHER CHARACTERISTICS
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• Stability

• Robustness
• Sensitivity

• Observability
• Controllability
• Reachability
• Stabilizability
• Reconstructability
• Detectability
• ……



MODELLING
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You have a physical system
You have learned some physics

Determine the input and output

Write the relevant equations

Derive the ODE

(Next step)
Solve it using Laplace transform

\reals



Modelling: Electric circuits
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Kirchhoff's current law:

The current entering any junction is equal to the current leaving that 

junction. i2 + i3 = i1 + i4

Kirchhoff’s voltage law:

The sum of all the voltages around a loop is equal to zero.

v1 + v2 + v3 +v4 = 0

Kirchhoff's circuit laws deal with the conservation of charge and 

energy in electrical circuits.



Modelling example: RC low-pass filter

This is a RC low-pass filter(LPF).

You have a voltage source Uin . 

You want to know Uout ,the voltage after the 
RC-LPF. 

You know R and C values. The initial 
condition is 0.

What should you do?
27

Uout
Uin



Modelling example: RC low-pass filter

Circuit analysis!
𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑅 = 𝐼𝐶

𝑈𝑖𝑛 = 𝑈𝑅 + 𝑈𝐶 = 𝑈𝑅 + 𝑈𝑜𝑢𝑡

𝑈𝐶 =
1

𝐶
න
0

1

𝐼 𝜏 𝑑𝜏 ⇒ IC = C
d𝑈𝐶
d𝑡

𝑈𝑅 = 𝐼𝑅𝑅 ⇒ IR =
𝑈𝑅
𝑅

𝑈𝑅
𝑅

= C
d𝑈𝐶
d𝑡
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Uout
Uin



Modelling example: RC low-pass filter

Circuit analysis! -> Differential Equation!
𝑈𝑅
𝑅

= C
d𝑈𝐶
d𝑡

⇒ 𝑈𝑅 = RC
d𝑈𝐶
d𝑡

𝑈𝑖𝑛 = 𝑈𝑅 + 𝑈𝑜𝑢𝑡 , 𝑈𝐶 = 𝑈𝑜𝑢𝑡

⇒ 𝑈𝑖𝑛 = RC
d𝑈𝑜𝑢𝑡
d𝑡

+ 𝑈𝑜𝑢𝑡
29

Uout
Uin



ELECTRICAL SYSTEMS –
RLC CIRCUITS
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\reals

Voltage - Current

Resistor U 𝑡 = 𝐼 𝑡 𝑅

Capacitor U 𝑡 =
1

𝐶
න
0

1

𝐼 𝜏 𝑑𝜏

Inductor U 𝑡 = 𝐿
𝑑 𝐼(𝑡)

𝑑 𝑡



Modelling example: Mechanical system

31

The force applied on m is 𝐹.

The velocity of m is 𝑣.

The displacement of m is 𝑥.

I pull the block m from sitting still, I want to 
know how it moves, in this case velocity.

Input F

Output 𝑣

F

x



Modelling example: Mechanical system
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Analysis! Free body diagram.

F

x

M

F

inertia

viscous damper

spring



Modelling example: Mechanical system
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Analysis! Free body diagram.

F

x

M

F

𝑚𝑎 = 𝑚
d𝑣(𝑡)

d𝑡

𝑏𝑣

𝑘𝑥 = 𝑘න

0

𝑡

𝑣 𝜏 d𝜏



Modelling example: Mechanical system
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Write differential equation

𝐹(𝑡) = 𝑘න

0

𝑡

𝑣 𝜏 d𝜏 + 𝑏𝑣(𝑡) + 𝑚
d𝑣(𝑡)

d𝑡

F

x



MECHANICAL SYSTEMS –
TRANSLATING SYSTEM
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\reals

Force - Velocity

Damper 
(Viscous friction)

𝐹 = 𝑏v

Spring 𝐹 = 𝑘න

0

𝑡

𝑣 𝜏 d𝜏

Mass (Inertia) 𝐹 = 𝑚
d𝑣(𝑡)

d𝑡



MECHANICAL SYSTEMS –
TRANSLATING SYSTEM
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\reals

Force – Displacement

Damper 
(Viscous friction)

𝐹 = 𝑏
d𝑥(𝑡)

d𝑡

Spring 𝐹 = 𝑘x

Mass (Inertia) 𝐹 = 𝑚
d2𝑥(𝑡)

d𝑡2



SUMMARY
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• Getting what we want from a system: control

• We like: causal & linear systems

• Open loop & closed loop control system

• “The standard model”

• Still changing? Transient
• Stop changing? Steady
• (BIBO) Stability

• Modelling physical systems with ordinary differential 
equations.



HOMEWORK

Read the lecture note:
Part 1 Introduction to fundamental concepts

Try to solve exercise problems in section 1.6

Stage ONE exercise:
• Problem 5 (you can skip sub question 3 for now)
• Problem 8
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