

BASIC CONTROL SYSTEMS

05 SYSTEM ANALYSIS THROUGH TRANSFER FUNCTIONS

HANSHU YU

NOVEMBER 2025

WHERE STUDENTS MATTER

POLES AND ZEROS

Theorem The Fundamental Theorem of Algebra

Let $f(x) = \sum_{n=0}^{k} a_n x^n$ be a non-constant polynomial and $a_n \in \mathbb{C}$, then there exist a unique factorization such that:

$$f(x) = \sum_{n=0}^{k} a_n x^n = r_0 \prod_{i=1}^{k} (x - r_i)$$

This fundamental theorem of algebra enables us to obtain a unique decomposition of a irreducible rational polynomial transfer function.

Numerator

Definition Poles

The value(s) of s such that the denominator D(s) = 0

Definition Zeros

The value(s) of s such that the numerator N(s) = 0

These guarantees: the poles and zeros are either real or in complex conjugate pairs.

Denominator

TRANSFER FUNCTIONS

All coefficients a_n and b_m are real.

Transfer functions can be written as:

$$\frac{Y(s)}{X(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_2 s^2 + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_2 s^2 + a_1 s + a_0}$$

Or as:

$$\frac{Y(s)}{X(s)} = \frac{b_m}{a_n} \cdot \frac{(s - z_1)(s - z_2)....(s - z_{m-1})(s - z_m)}{(s - p_1)(s - p_2)....(s - p_{p-1})(s - p_n)}$$

Which is the same as:

$$H(s) = \frac{b_m \prod_{k=0}^m z_k}{a_n \prod_{q=0}^m p_q} \frac{(\frac{1}{z_1}s - 1)(\frac{1}{z_2}s - 1)\dots(\frac{1}{z_{m-1}}s - 1)(\frac{1}{z_m}s - 1)}{(\frac{1}{p_1}s - 1)(\frac{1}{p_1}s - 1)\dots(\frac{1}{p_{n-1}}s - 1)(\frac{1}{p_n}s - 1)}$$

DC Gain

$$= K_{DC} \cdot \frac{(\frac{1}{Z_1}s - 1)(\frac{1}{Z_2}s - 1)\dots(\frac{1}{Z_{m-1}}s - 1)(\frac{1}{Z_m}s - 1)}{(\frac{1}{p_1}s - 1)(\frac{1}{p_1}s - 1)\dots(\frac{1}{p_{n-1}}s - 1)(\frac{1}{p_n}s - 1)}$$

AN EXAMPLE

Input: x, Output: y,

Assume 0 initial conditions.

Given an ODE:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2\frac{\mathrm{d}y}{\mathrm{d}t} - 8y = 3\frac{\mathrm{d}x}{\mathrm{d}t} + 1x$$

We do the Laplace transform:

$$s^2Y + 2sY - 8Y = 3sX + 1X$$

Define transfer function H:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{3s+1}{s^2+2s-8} = 3\frac{s+\frac{1}{3}}{(s+4)(s-2)}$$

IDENTIFYING POLES AND ZEROS

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{3} \frac{s + \frac{1}{3}}{(s+4)(s-2)}$$

According to the definitions:

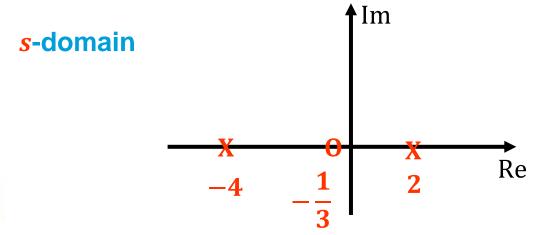
Gain <i>K</i>	$\frac{1}{3}$
Zeros z	$-\frac{1}{3}$
Poles p	-4, +2

Obviously, when s = -4 or 2 (POLE), we have $H(s) \rightarrow \infty$

Obviously, when $s = -\frac{1}{3}$ (ZERO), we have $H(s) \to 0$

DRAWING POLES AND ZEROS IN THE COMPLEX PLANE

Components	Values	
Gain <i>K</i>	$\frac{1}{3}$	We don't draw this here.
Zeros $s = z$	$-\frac{1}{3}$	X
Poles $s = p$	-4, +2	0



ADDITIONAL PROPERTY OF POLES AND ZEROS

We are modelling causal linear systems in the real world.

ADDITIONAL PROPERTY OF POLES AND ZEROS

We are modelling causal linear systems in the real world.

This simple sentence tells us a lot!

ADDITIONAL PROPERTY OF POLES AND ZEROS

We are modelling causallinear systems in the real world.

Number of zeros never more than number of poles

All coefficients are real

The system can be modeled by a linear inhomogeneous ODE

The poles and zeros with non-zero imaginary components always comes in conjugate pairs.

For all poles and zeros, if there exist a pole/zero $\sigma + j\omega$ with $\omega \neq 0$, there must exist another pole/zero which is $\sigma - j\omega$ with $\omega \neq 0$ (the complex conjugate).

CONTINUING OUR EXAMPLE

$$H(s) = \frac{Y(s)}{X(s)} = \frac{3s+1}{s^2+2s-8} = 3\frac{s+\frac{1}{3}}{(s+4)(s-2)}$$

$$H(s) = \frac{\frac{11}{6}}{(s+4)} + \frac{\frac{7}{6}}{(s-2)}$$

Inverse Laplace transform:

$$h(t) = \frac{1}{6} \left(11e^{-4t} + 7e^{2t} \right)$$

TRANSFORM -> DECOMPOSE

What did we just do?

The process function h(t) can be decomposed to the summation of linearly independent exponentials: $Ce^{\lambda t}$

In fact, with Laplace transform, we can decompose any <u>linear system</u> into linearly independent exponentials:

$$h(t) = \sum C e^{\lambda t}$$

POLES ARE CRUCIAL

What did we just do?

The process function h(t) can be decomposed to the summation of linearly independent exponentials: $Ce^{\lambda t}$

In fact, with Laplace transform, we can decompose any <u>linear system</u> into linearly independent exponentials:

$$h(t) = \sum C e^{\lambda t}$$

 λ correspond to the poles of the transfer function.



POLES ARE CRUCIAL

 λ correspond to the poles of the transfer function. So,

$$h(t) = \sum Ce^{\lambda t} = \sum Ce^{\sigma t}e^{j\omega t}$$

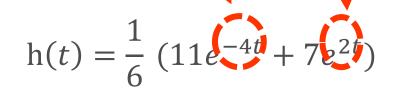
 σ - determines the decay(if stable) of the output signal ω - determines the oscillation of the output signal

POLES ARE CRUCIAL – RECALL EXAMPLE

$$H(s) = \frac{Y(s)}{X(s)} = \frac{3s+1}{s^2+2s-8} = 3\frac{s+\frac{1}{3}}{(s+4)(s-2)}$$

$$H(s) = \frac{\frac{11}{6}}{(s+4)} + \frac{\frac{7}{6}}{(s-2)}$$
pole: -4 pole: 2

Inverse Laplace transform:



STABILITY

Is h(t) stable?

$$h(t) = \frac{1}{6} \left(11e^{-4t} + 7e^{2t} \right)$$



STABILITY

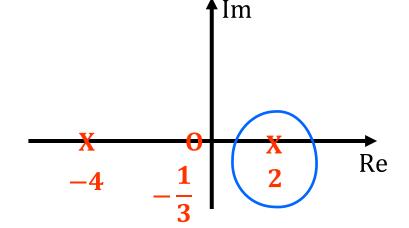
Is h(t) stable?

$$h(t) = \frac{1}{6} \left(11e^{-4t} + 7e^{2t} \right)$$

Obviously not, if we look at h(t) as $t \to \infty$:

$$\lim_{t \to \infty} \frac{1}{6} \left(11e^{-4t} + 7e^{2t} \right) = 0 + \infty$$

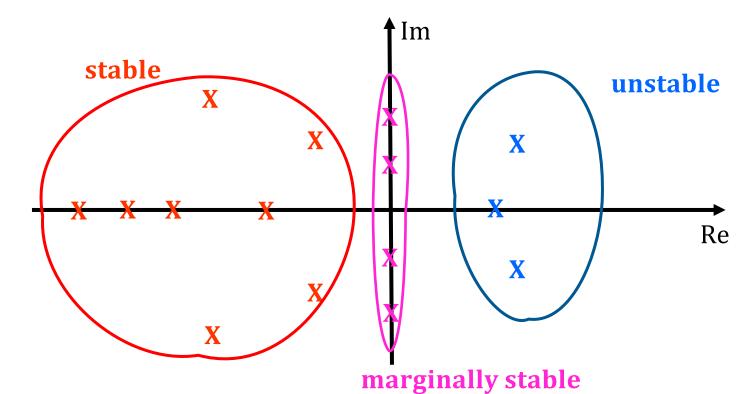
So not stable!



STABILITY CRITERIA

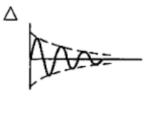
Left Half Plane
All poles should be in the <u>open LHP</u> of the s-plane.

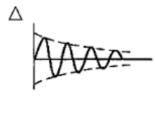
iff $\forall \operatorname{Re}(p) < 0$, stable!

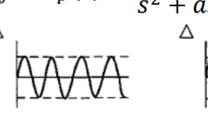


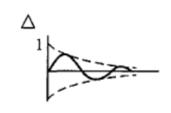
POLES AND ZEROS

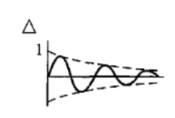
Larger imaginary part of pole value gives higher oscillation frequency

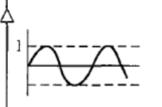


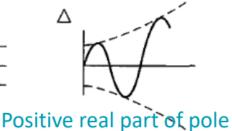




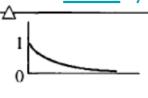


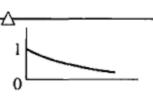


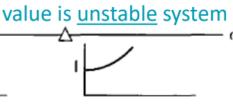




Negative real part of pole value is <u>stable</u> system





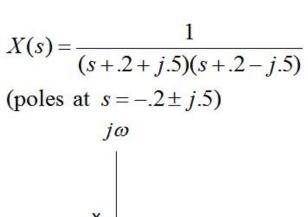


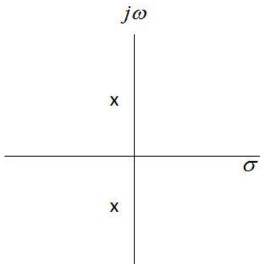
SEPTEMBER 2024

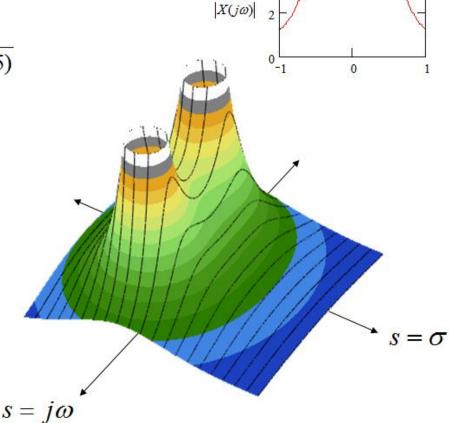
Zero real part of pole value is marginally stable system

Poles and zeros: Why we care!

Filter Example







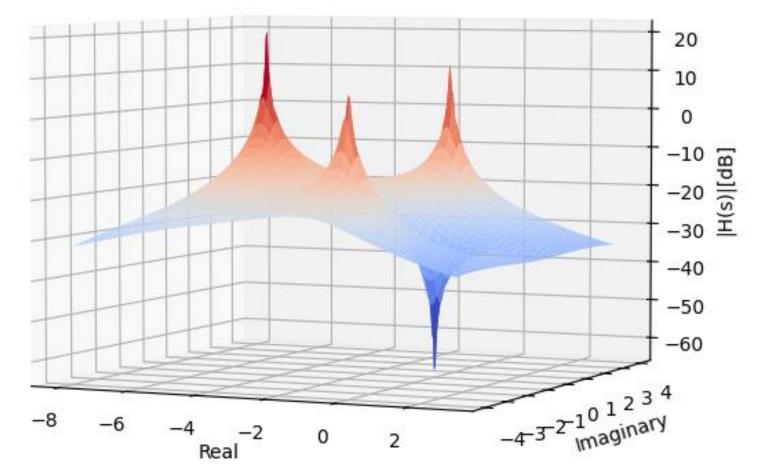
 $F(0,\omega)$

Poles and zeros: Why we care!

S

$$(s+5)(s^2+2s+7)$$

(Visualization in log scale)



SUMMARY

Transfer function:

$$H(s) = \frac{Y(s)}{X(s)}$$

Poles:

s = p such that X(s = p) = 0, where $|H(s)| \rightarrow \infty$

Zeros:

s = z such that Y(s = z) = 0, where $|H(s)| \rightarrow 0$

Stability criteria:

all poles in the open LHP

THE LAPLACE TRANSFORM OF A GENERAL PERIODIC FUNCTION

Define a general function $\gamma(t)$ defined in one time period T:

$$\gamma(t) = \begin{cases} f(t), & 0 < t < T \\ 0, & otherwise \end{cases}$$

We can write the periodic f(t) as the delayed copies of $\gamma(t)$:

$$f(t) = \gamma(t - 0T) + \gamma(t - 1T) + \gamma(t - 2T) + \gamma(t - 3T) + \cdots$$

Recall a *single* time shift in Laplace transform:

$$f(t-a) \Leftrightarrow e^{-as} \cdot F(s)$$

The Laplace transformed F(s):

$$F(s) = \Gamma(s) \sum_{n=0}^{\infty} e^{-nTs}$$

Because we have n, T > 0 and e^{-1} , we may utilize the geometric series:

$$F(s) = \frac{1}{1 - e^{-sT}} \Gamma(s)$$

THE LAPLACE TRANSFORM OF A PERIODIC FUNCTION

$$F(s) = \frac{1}{1 - e^{-sT}} \Gamma(s)$$

When we have a sampling frequency $\omega_0 = \frac{1}{T}$, F(s) becomes:

$$F(s) = \frac{1}{1 - e^{-\frac{s}{\omega_0}}} \Gamma(s)$$

This **periodic** time shifting creates "a pole" in addition to the $\Gamma(s)$?!

As $\frac{\omega}{\omega_0} \to 0 + 2k\pi$, $k \in \mathbb{Z}$, we may obtain the pole:

$$\frac{1}{1 - e^{-j\frac{\omega}{\omega_0}}} \to \frac{1}{0} \to \infty$$

HOMEWORK

Stage ONE exercises:

- Problem 1
- Problem 4

SELF-READING

WHERE STUDENTS MATTER

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1 (both for zeros and poles!)
 - Examples:

Coefficient in the numerator is 0.1

$$G(s) = \frac{0.1s + 1}{s^2 + 7s + 12} =$$

Denominator coefficient of the highest power already is 1

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1 (both for zeros and poles!)
 - Examples:

$$G(s) = \frac{0.1s+1}{s^2+7s+12} = \frac{0.1(s+10)}{s^2+7s+12} =$$

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1 (both for zeros and poles!)
 - Examples:

$$G(s) = \frac{0.1s+1}{s^2+7s+12} = \frac{0.1(s+10)}{s^2+7s+12} = \frac{1}{10} \cdot \frac{s+10}{s^2+7s+12}$$

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1 (both for zeros and poles!)
 - Examples:

$$G(s) = \frac{0.1s+1}{s^2+7s+12} = \frac{0.1(s+10)}{s^2+7s+12} = \frac{1}{10} \cdot \frac{s+10}{s^2+7s+12}$$

$$G(s) = \frac{3s + 30}{5s^2 + 15s + 250} =$$



- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1 (both for zeros and poles!)
 - Examples:

$$G(s) = \frac{0.1s+1}{s^2+7s+12} = \frac{0.1(s+10)}{s^2+7s+12} = \frac{1}{10} \cdot \frac{s+10}{s^2+7s+12}$$

$$G(s) = \frac{3s+30}{5s^2+15s+250} = \frac{3(s+10)}{5(s^2+3s+50)} = \frac{3}{5} \cdot \frac{s+10}{s^2+3s+50}$$

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1
- Step 2: rewrite the transfer function in its base parts – a constant, poles and zeros

$$G(s) = \frac{1}{10} \cdot \frac{s+10}{s^2 + 7s + 12} = \frac{1}{10} \cdot \frac{s+10}{(s+3)(s+4)}$$

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1
- Step 2: rewrite the transfer function in its base parts – a constant, poles and zeros

$$G(s) = \frac{1}{10} \cdot \frac{s+10}{s^2 + 7s + 12} = \frac{1}{10} \cdot \frac{s+10}{(s+3)(s+4)}$$

$$G(s) = \frac{3}{5} \cdot \frac{s+10}{s^2 + 3s + 50} =$$

Sometimes the solution is complex → results in two complex poles

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1
- Step 2: rewrite the transfer function in its base parts – a constant, poles and zeros

$$G(s) = \frac{1}{10} \cdot \frac{s+10}{s^2 + 7s + 12} = \frac{1}{10} \cdot \frac{s+10}{(s+3)(s+4)}$$

$$G(s) = \frac{3}{5} \cdot \frac{s+10}{s^2 + 3s + 50} = \frac{3}{5} \cdot \frac{s+10}{(s+\frac{3}{2} + \frac{13.8}{2}j)(s+\frac{3}{2} - \frac{13.8}{2}j)}$$

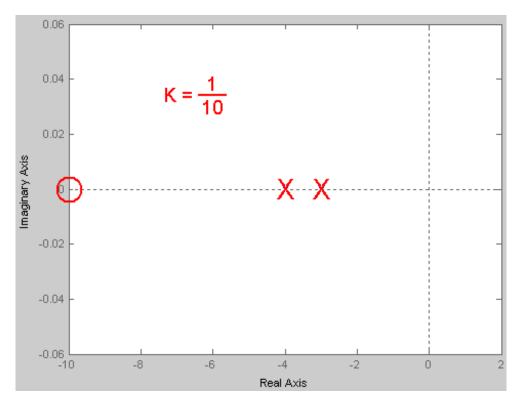
Sometimes the solution is complex → results in two complex poles

- Step 1: rewrite the transfer function in such a way that the coefficient of the highest power becomes 1
- Step 2: rewrite the transfer function in its base parts
 a constant, poles and zeros
- Step 3: draw the poles and zeros in the (complex) s-plane; the constant is mentioned separately as K

Poles and zeros example

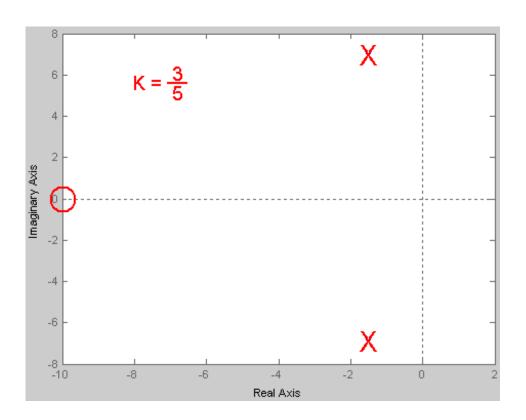
• Step 3: draw the poles and zeros in the (complex) s-plane; the constant is mentioned separately as K $\frac{1}{s+10}$

 $G(s) = \frac{1}{10} \cdot \frac{s+10}{(s+3)(s+4)}$



Poles and zeros example

$$G(s) = \frac{3}{5} \cdot \frac{s+10}{(s+\frac{3}{2}+\frac{13.8}{2}j)(s+\frac{3}{2}-\frac{13.8}{2}j)}$$



Draw the poles and zeros in the s-plane for:

1.
$$H(s) = \frac{25s+3}{4s^2+9s+2}$$

2.
$$H(s) = \frac{3s+4}{s^2+6s+8}$$

3.
$$H(s) = \frac{2s+1}{s^2+4s+8}$$

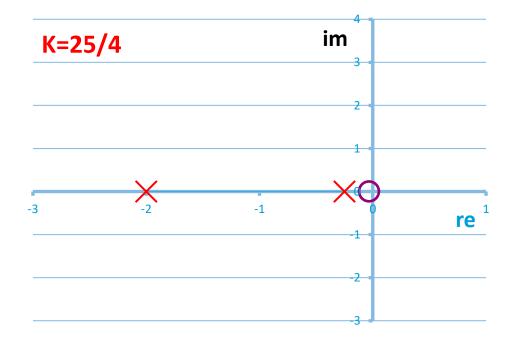
Draw the poles and zeros in the s-plane for:

1.
$$H(s) = \frac{25s+3}{4s^2+9s+2}$$

zero: -3/25

■ poles: -1/4 and -2

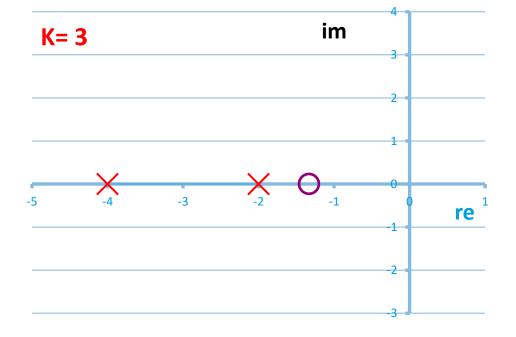
• K = 25/4



Draw the poles and zeros in the s-plane for:

2.
$$H(s) = \frac{3s+4}{s^2+6s+8}$$

- zeros: -4/3
- poles: -2 and -4
- K = 3



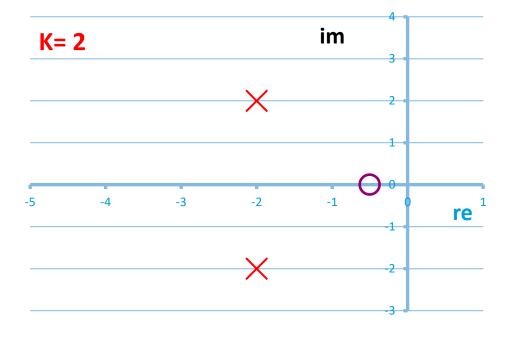
Draw the poles and zeros in the s-plane for:

3.
$$H(s) = \frac{2s+1}{s^2+4s+8}$$

■ zeros: -1/2

■ poles: -2+2j and -2-2j

K = 2



Draw in the s-plane the poles and zeros of the transfer function H(s) = X(s)/F(s) and:

$$\frac{d^4x(t)}{dt^4} + 2\frac{d^3x(t)}{dt^3} + 2\frac{d^2x(t)}{dt^2} = \frac{df(t)}{dt} + f(t)$$

All values at time = 0 are zero (so x'''(0)=x''(0)=0, etc.).

• Draw the poles and zeros in the s-plane for:

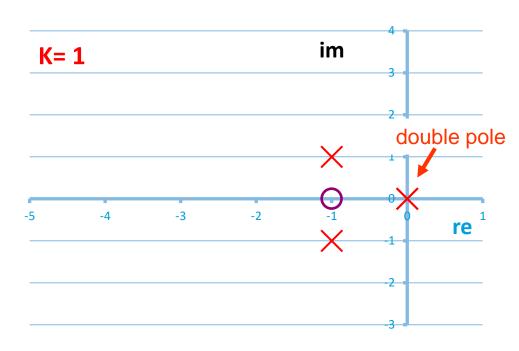
$$\frac{d^4x(t)}{dt^4} + 2\frac{d^3x(t)}{dt^3} + 2\frac{d^2x(t)}{dt^2} = \frac{df(t)}{dt} + f(t)$$

Laplace
$$\rightarrow s^4 + 2s^3 + 2s^2 = s + 1$$

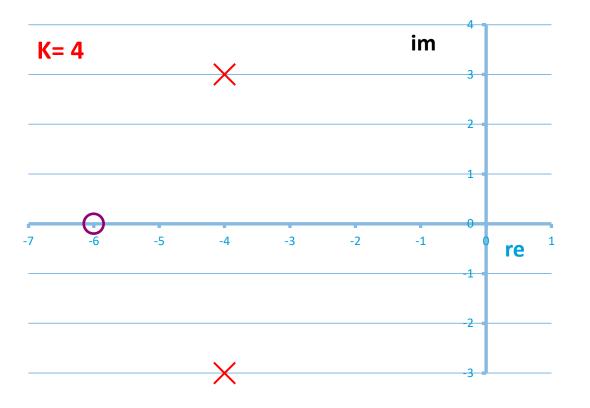
Transfer function:

$$H_S = \frac{s+1}{s^4 + 2s^3 + 2s^2}$$

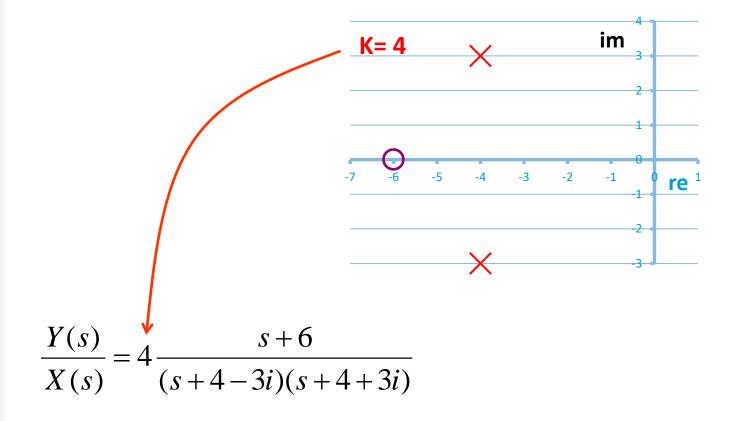
$$= \frac{s+1}{s*s(s+1+j)(s+1-j)}$$

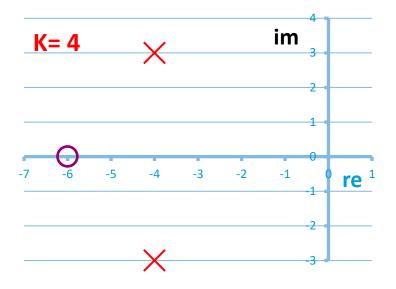


5. Find the differential equation for:

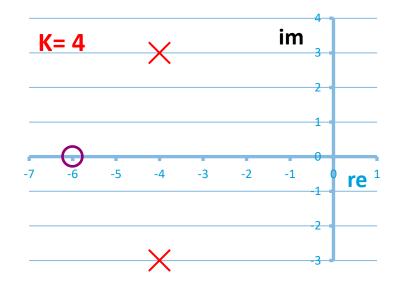


Assume that the initial conditions are zero. Input is x(t) and output is y(t).





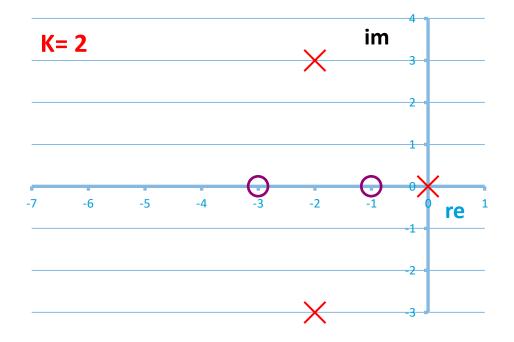
$$\frac{Y(s)}{X(s)} = 4 \frac{s+6}{(s+4-3i)(s+4+3i)} = \frac{4s+24}{s^2+8s+25}$$



$$\frac{Y(s)}{X(s)} = 4\frac{s+6}{(s+4-3i)(s+4+3i)} = \frac{4s+24}{s^2+8s+25}$$

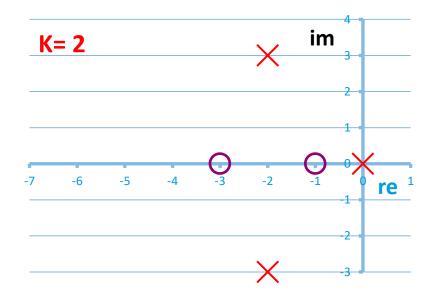
$$\frac{d^2y(t)}{dt^2} + 8\frac{dy(t)}{dt} + 25y = 4\frac{dx(t)}{dt} + 24x(t)$$

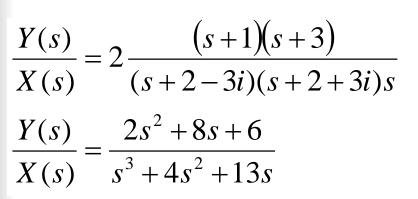
6. Find the differential equation for:

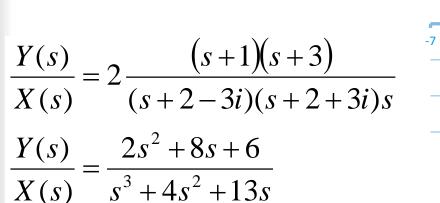


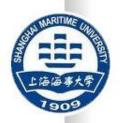
Assume that the initial conditions are zero. Input is x(t) and output is y(t).

$$\frac{Y(s)}{X(s)} = 2 \frac{(s+1)(s+3)}{(s+2-3i)(s+2+3i)s}$$









$$\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 13\frac{dy(t)}{dt} = 2\frac{d^2x(t)}{dt^2} + 8\frac{dx(t)}{dt} + 6x(t)$$

$$\frac{d^{2}y(t)}{dt^{2}} + 8\frac{dy(t)}{dt} + 15y(t) = 5\frac{dx(t)}{dt} + 10x(t)$$

$$x(t) = 2t$$

7. Draw the poles and zeros in the s-plane for the combination:

$$\frac{d^{2}y(t)}{dt^{2}} + 8\frac{dy(t)}{dt} + 15y(t) = 5\frac{dx(t)}{dt} + 10x(t)$$

$$x(t) = 2t$$

Laplace Transform

$$\frac{d^{2}y(t)}{dt^{2}} + 8\frac{dy(t)}{dt} + 15y(t) = 5\frac{dx(t)}{dt} + 10x(t) \qquad H(s) = \frac{5s + 10}{s^{2} + 8s + 15}$$

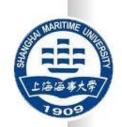
$$x(t) = 2t \qquad X(s) = \frac{2}{s^{2}}$$

$$H(s) = Y(s)/X(s) \rightarrow Y(s)=H(s)\cdot X(s)$$

$$\frac{d^{2}y(t)}{dt^{2}} + 8\frac{dy(t)}{dt} + 15y(t) = 5\frac{dx(t)}{dt} + 10x(t) \qquad H(s) = \frac{5s + 10}{s^{2} + 8s + 15}$$
$$x(t) = 2t \qquad X(s) = \frac{2}{s^{2}}$$

$$Y(s) = \frac{10s + 20}{s^2(s^2 + 8s + 15)}$$

$$Y(s) = 10 \frac{s+2}{s^2(s+3)(s+5)}$$

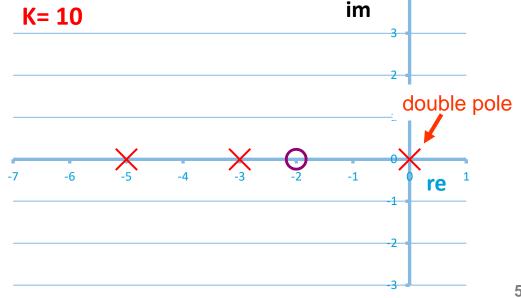


$$\frac{d^{2}y(t)}{dt^{2}} + 8\frac{dy(t)}{dt} + 15y(t) = 5\frac{dx(t)}{dt} + 10x(t) \qquad H(s) = \frac{5s + 10}{s^{2} + 8s + 15}$$

$$x(t) = 2t \qquad X(s) = \frac{2}{s^{2}}$$

$$Y(s) = \frac{10s + 20}{s^2(s^2 + 8s + 15)}$$

$$Y(s) = 10 \frac{s+2}{s^2(s+3)(s+5)}$$



$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = 3\frac{dx(t)}{dt} + 18x(t)$$

$$x(t) = 5\cos(3t)$$

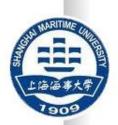


8. Draw the poles and zeros in the s-plane for the combination:

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = 3\frac{dx(t)}{dt} + 18x(t)$$

$$x(t) = 5\cos(3t)$$

Laplace Transform



$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = 3\frac{dx(t)}{dt} + 18x(t) \qquad H(s) = \frac{3s+18}{s^2+5s+4}$$

$$x(t) = 5\cos(3t) \qquad X(s) = 5\frac{s}{s^2+9}$$
Laplace
Transform



$$\frac{d^{2}y(t)}{dt^{2}} + 5\frac{dy(t)}{dt} + 4y(t) = 3\frac{dx(t)}{dt} + 18x(t) \implies H(s) = \frac{3s + 18}{s^{2} + 5s + 4}$$

$$x(t) = 5\cos(3t) \implies X(s) = 5\frac{s}{s^{2} + 9}$$
Laplace
Transform

$$Y(s) = \frac{5s(3s+18)}{(s^2+9)(s^2+5s+4)}$$

$$\frac{d^{2}y(t)}{dt^{2}} + 5\frac{dy(t)}{dt} + 4y(t) = 3\frac{dx(t)}{dt} + 18x(t) \qquad H(s) = \frac{3s + 18}{s^{2} + 5s + 4}$$

$$x(t) = 5\cos(3t) \qquad X(s) = 5\frac{s}{s^{2} + 9}$$
Laplace
Transform

$$Y(s) = \frac{5s(3s+18)}{(s^2+9)(s^2+5s+4)}$$

$$Y(s) = 15 \frac{s(s+6)}{(s+1)(s+4)(s+3j)(s-3j)}$$

$$Y(s) = 15 \frac{s(s+6)}{(s+1)(s+4)(s+3j)(s-3j)}$$

Matlab commands

$$H_s = \frac{(s+7)}{s(s+5)(s+15)}$$

Define a system:

You can use:

```
>> sys=zpk(-7,[0 -5 -15],1);
```

or

Another option is

```
>> s=tf('s');
>> sys= (s+7)/(s*(s+5)*(s+15));
```

Look at location of poles and zeros

- >> pzmap(sys)
- >> Itiview(sys)

