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Recap

We have learned to derive the transfer function of a system:

2S+1
s*+4s+8

_‘Ei

H(s) =

We have learned to place the open loop poles and zeros in the
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Next step:

learn about the stability of the system by plotting /drawing the root
locus and see the location of the closed loop poles




CLOSED LOOP TF

error Output

Reference T
set point
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We were working with open loop transfer function

G(s)H —KN(S)
(VH() = K33

The closed loop transfer function:

G(s)H(s)
1+ G(s)H(s)




CLOSED LOOP TF
POLES AND ZEROS

We were working with open loop transfer function

OLTF = G(s)H —KN(S)
= GOMHE) =Ko

UNIVERSITY
OF APPLIED SCIENCES

The closed loop transfer function:

_ G(s)H(s)
CLTE = 1+ G(s)H(s)

What happens to poles and zeros of the CLTF?




CLOSED LOOP TF
POLES AND ZEROS

We were working with open loop transfer function

OLTF = G(s)H —KN(S)
= GOMHE) =Ko
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The closed loop transfer function:

K NG
CITF — G(s)H(s) D(s) KN(s)
14+ G(s)H(s) 1+KN(s) D(s) + KN(s)
D(s)
POLES MOVE!

ZEROS STAYS!




EXAMPLE:
SECOND-ORDER OLTF

K
as? + bs + ¢
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H(s) =
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as’+bs+c=0

—b + Vb2 — 4ac
2a

P12 =




EXAMPLE:
SECOND-ORDER CLTF

9

H(s) = simple gain
(s) as?+bs+ (c+K) controller

>0

)
Wn: =
e n
w:3
>
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as?+bs+(c+K)=0

—b £+ /b2 — 4a(c + K)
p1,2 — 2a

_—b +\/b2 — 4a(c + K)

2a 2a




EXAMPLE:
SECOND-ORDER CLTF

 —btb?—4a(c+K) —b+\/b2 —4a(c +K)
P12 = 2a - 2a 2a
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We start with two real OLTF poles.
We have b? > 4ac . We increase K.

When K = 0, we obtain the OLTF poles as the CLTF poles.

As K T, the CLTF poles tends to converge to 2 identical
poles at;—Z till b? = 4a(c + K) .

% Further as K T, the real part of the poles stays the same at

* ;—Z. The imaginary part of the poles appear and diverges. ¢




STABILITY!
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Position of poles determines the stability!
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When we have a closed loop system with a controller, the
poles of the CLTF moves away from the poles of OLTF!

To determine the stability of the entire control system, we
need to know the position of poles of the closed loop
system.




BACK TO OUR EXAMPLE:
SECOND-ORDER CLTF

[f we are given an OLTF, we can draw the poles when the
gain controller is 0.
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But we can also infer how the CLTF poles changes when
we tune the controller gain larger!

The poles moves in continuous trajectories.
We can easily draw them:

OLTF characteristic eq:
(s+1)(s+2)
= s+ 3s + 2
CLTF characteristic eq:
s+ 3s+(2+K)

10




BACK TO OUR EXAMPLE:
SECOND-ORDER CLTF

v

i

o Z

2 0 If we are given an OLTF, we can draw the poles when the gain controller is 0.

w:o But we can also infer how the CLTF poles changes when we tune the controller gain
2 = larger!

=2 The poles moves in continuous trajectories.

=:S We can easily draw them:

We just draw the “Root Locus”

A
OLTF characteristic eq: [m

(s+1)(s+2)
= s+ 3s + 2
CLTF characteristic eq:
s+ 3s+(2+K)
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What is the root locus about?

The root locus plots the poles of the closed loop transfer function in
the complex s-plane as a function of a gain parameter K

Open loop poles:
Up until now we have drawn the poles and zero in the s-plane and
reported the gain of the transfer function in the plot.
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https://en.wikipedia.org/wiki/Zeros_and_poles
https://en.wikipedia.org/wiki/Closed_loop_transfer_function
https://en.wikipedia.org/wiki/S-plane

What is the root locus about?

The root locus plots the poles of the closed loop transfer function in
the complex s-plane as a function of a gain parameter K

Open loop poles:
Up until now we have drawn the poles and zero in the s-plane and
reported the gain of the transfer function in the plot.

P=-2+2j and-2-2j,Z2=-0.5

OLTF: X

2K(S+%)
(s—=24+2j)(s—2-2))

4
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CLTF:
2K (s + %)

(s—24+2j)(s—2—2j) +2K(s+%)



https://en.wikipedia.org/wiki/Zeros_and_poles
https://en.wikipedia.org/wiki/Closed_loop_transfer_function
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What is the root locus about?

The root locus plots the poles of the closed loop transfer function in
the complex s-plane as a function of a gain parameter K

Open loop poles:
Up until now we have drawn the poles and zero in the s-plane and
reported the gain of the transfer function in the plot.

P=-2+2j and-2-2j,Z=-0.5

OLTF: X

2K(S+%)
(s—=24+2j)(s—2-2))

4
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5 4 -3

2 re
X

o
2
1
®
-1 4 0
-2
CLTF: 5

2K (s + %)

C(s—2+2)) (S@*{{ZK(S + %)J
When K small{OLTF polesdominate the denominator.

When K very Iarge[OLTF zero% dominate the denominator.



https://en.wikipedia.org/wiki/Zeros_and_poles
https://en.wikipedia.org/wiki/Closed_loop_transfer_function
https://en.wikipedia.org/wiki/S-plane

What is the root locus about?

The root locus plots the poles of the closed loop transfer function in
the complex s-plane as a function of a gain parameter K

Open loop poles:
Up until now we have drawn the poles and zero in the s-plane and
reported the gain of the transfer function in the plot.
P=-2+2j and-2-2j,Z=-0.5

4
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OLTF with controller K: X
1 1
ZK(S M 7) 5 4 3 2 -1@0 &
(s —2+2j) (s —2—2j) S ol
CLTF: 5

2K (s + %)

C(s=2+2)) (8:@21((84_%)}

As K increase from very small to very large, the CLTF poles are

moving
from OLTF poles to OLTF zeros
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What is the root locus about?

The root locus plots the poles of the closed loop transfer function in
the complex s-plane as a function of a gain parameter K

>4
=3 CLTF: 4
n:s 2Ks + K s
3
Wwo s2+4s+ 8 +2Ks + K X
> D :
Z2 2Ks + K o, .
: . -5 -4 -3 -2 -1 4 r

® s2+(4+2K)s+ (8 + K) N

2 _

K24+2K—4=(K+4)(K-1)
When —4 < 0 < K < 1,we have K? + 2K — 4 < 0.

As K =1, the imaginary part vanishes.
lim —(2+ K) — VK2 + 3K — 4 = —co (Obvious)

K—+o00

lim —(2+K)+VK2+3K—4

K—>+o00
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What is the root locus about?

The root locus plots the poles of the closed loop transfer function in

the complex s-plane as a function of a gain parameter K
A. Jim —(2+K) = VK7 + 3K — 4 = —oo X
. B > — 5 4 3 -2
B. lim 2+K)+VK2+3K—4 <
y (2+K)+VK2+3K —4)(—(2+K) +VK? + 3K — 4)
= lim
K=+ 2+ K)+VK2+3K —4
_ —K
= lim
K->+ (2 4+ K)+ VK2 + 3K — 4
—1
= lim

K->+ 7 3 4
?+1+\/1+F_ﬁ
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What is the root locus about?

The root locus plots the poles of the closed loop transfer function in

the complex s-plane as a function of a gain parameter K
A. Jim —(2+K) = VK7 + 3K — 4 = —oo X
. B > — 5 4 3 -2
B. lim 2+K)+VK2+3K—4 <
y (2+K)+VK2+3K —4)(—(2+K) +VK? + 3K — 4)
= lim
K=+ 2+ K)+VK2+3K —4

—K
= lim
K->+ (2 4+ K)+ VK2 + 3K — 4

= lim

—1
K—+0oo \ \
\%+ 1+ J1 +§\—\A%
1
2

This is our zero!
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What is the root locus about?

The root locus plots the poles of the closed loop transfer function in
the complex s-plane as a function of a gain parameter

Closed loop poles:

The gain in the transfer function influences the position of the poles.
The way the poles move as the gain increases form 0 to actual gain
in the system is represented by the root locus.
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Roots at K=4.0019 Locus Crossing Axis
5 . 5
4 4
3 3
= 2 w 2
5 1 S 1
5 5
(=15
% - X
E 1 E 1
= 2 2 2
-3 -3
-4 -4
5 . . . P 5 . . . :
-6 -4 2 0 -6 -4 2 0
g (real part of s) o (real part of s)

The system behaviour is determined by the position of the closed
loop poles.
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Pole location information (graphical)

The impulse response for poles at different location in the s-plane
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Root locus and stability
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Characteristic equation

System Closed loop transfer function

X Y
ﬂ) G(s) (S)> Y (s) G(s)
5 0= %6 ~ Trawae)
H(s) |

The characteristic equation is defined by setting the denominator
of the closed loop transfer function to zero.
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The characteristic equation: 1+ G(s)H(s) =0

The product G(s)H(s) can often be expressed as a rational polynomial

function:
(s+2z1)(s+22) - (s+ 2m)

(s+p1)(s+p2)---(s+pn)

G(s)H(s) = K

Where K is gain, -z, are zeros and —p,, are poles.

The value of K does not affect the location of the zeros.
The open-loop zeros are the same as the closed-loop zeros




Root locus example

* General system for root locus

v

controller process

R(s) — K ——G(s) C(s)

Sensor

H(s)

>
=2
o
w;g
2z
Z 3
ik

5
(s+1)

— For example consider process G(s) —
— withasensor H(s)=1

— Furthermore we consider only nonnegative K,so K =0




Root locus example

v

S i The ‘pzmap’ of the process shows the location of its zeros and poles
£y 5
Q0 Zeros: The process:  G(S) =
9 numerator = 0 (s+1)
-— O 1 . .
Z 2 no zero
=:c Poles: -
. 06
denominator =0 N
s -1 - 02r
In Matlab - 02y '
>> sys=tf(5,[1 1]) oy
>> pzmap(sys) 06|
1.8 -
5 5 4 3 ‘B ; !

Feal Axis

24
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Root locus example

What are the values of the zeros and poles of the closed loop?

5

R(s) t ~G(s) - C(s) G(s) = (s+1)
H(s)=1
Hs) (S)

Closed loop TF:

KG(s)

S+1)+

Zeros: set numerator=0

here no zeros, but else independent on value of K

Poles: set denominator =0 s+(bK+1) =0

the poles are dependent on value of K | S = 5K -1

25



Root locus example G(S)H(s) = —>

v

s+1
i ol In Matlab (s+1)
: § =2 Sysztf(S'[l 1]) 0.2 L L L F\COOt LOCUSC [ C
g § >> rlocus(sys)
w o or 0.15 - 4
2z > > rltool(sys)
-5 01 - Open loop pole of G(s)H(s) .
DS
0.05 - -
2
g <
~ -0.05 - -
pole of closed-loop for
01~ increasing value of K g
-0.15 - -
_02 C r r r r r r r r L
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

Real Axis

For which value of K is the closed-loop stable?

Starts at K=0 - s=-1, with increasing K 2> s

: . 26
remains negative, so always stable




Root locus example of using Matlab
35

v

>0 G(S)H (s) =

=2 (SR () s +4s°+s5—6

0o

22 Matlab: - | | | | HDD‘ELIDn:us |
Z:< |

=S | S>num=[35];

>>den=[14 1 -6];
>>sys=tf(hnum,den);
>>rlocus(sys)

Imaginary Axis
(o]

or use

>>rltool(sys)

Feal Axiz
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ROOT-LOCUS ASYMPTOTES
Intuition:
KNG
CLTF — G(s)H(s) D(s) KN(s)
14+ G(s)H(S) 1+KN(s) D(s) + KN(s)
D(s)

CLTF characteristic equation:
D(s)+ KN(s) =0

D(s) (S —p1)(s —p2)(s —p3) ..
N(s) (s—z)(s—2)(s — z3) ..

= —K

As K — oo, we can approximately reduce the above

R equation to:

s = —oo, with n = #P — #Z

28



>
=
n:
-4
Ww:
>
Z
=1

v
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ROOT-LOCUS ASYMPTOTES

s = —oo, with n = #P — #Z

We would like to solve for s, thus we have:
1

s = (—oo)n

If we write both sides of the equation in polar form:

9 1 l.(n+2k7r)
Sle”™” = |oo|ne n )
|sle'” = |oo] k€’

We can see that
o (m + 2km)

n

k €Z

29



ROOT-LOCUS ASYMPTOTES

Looking back:

CLTF characteristic equation:
D(s) +KN(s) =0
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D(s) _ (s —p1)(s —p2)(s — p3) ... _
N(s) (s—z)(s—2z)(s —z3) ...

—K

Let a = #P and f = #Z ,approximating polynomials using
the two highest order terms:

(S o pl)(s T pZ)(S — pg) - st + (Zp) S“_l
(S _ Zl)(S — Zz)(S — Zg) 5.3 + (ZZ) S,B’—l

30




ROOT-LOCUS ASYMPTOTES
(s = p1)(s —p2)(s — p3) .. N s+ (3p) s* 1
(s — Z1)(S — Zz)(S — Z3) sB + (32) sB-1

We can assume pole-zero cancellation. We can most safely
do that when we assume k — oo and that is what we were
calculating. Apply polynomial long division leads us to:
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s+ (Xp) s 1
sP + (Xz) sP1 T sha Op — Yz)sh-a-1

3p - 2z)ﬁ‘“

s#=¢ 4 (3p - Zashet~(s - 23

2P — Xz
HP — #7 31
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ROOT-LOCUS ASYMPTOTES

The root-locus asymptotes need to symmetrically
scan through the entire unit circle.

Number of asymptotes: #P — #Z

Angles separation between asymptotes next to

each other:
360°

#P — #Z

For k-th asymptote:

360°k + 180°
#P — #Z

32



CLTF REPEATED ROOTS b
WHY ?

2a

Departure point @(when this polynomial contains repeated roots).

v

Theorem:
A polynomial p(x) with real coefficients has a root r repeated n times,
then the first n derivatives of p(x) at that root r will be zero.

D=0
=2
o
w;g
2z
2
==

OLTF characteristic eq:
(s+1)(s+2)
= s+ 3s + 2
CLTF characteristic eq:
s+ 3s+(2+K)

33




CLTF REPEATED ROOTS b
WHY ?

2a
Theorem:
A polynomial p(x) with real coefficients has a root r with multiplicity
n, then the first n — 1 derivatives of p(x) at that root r will be zero.

v
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>
=
n:
-4
Ww:
>
Z
=1

Back to our 2" order characteristic equation:
p(s) = as®?+bs+c=0

I[f we know s = r is a double root (multiplicity 2), then:
p(r) =0
p'(r) =0
Thus we can derive:
ar’?+br+c=0
2ar + b =10

2a 34




ROOT-LOCUS
CONVENIENT RULES

1. Where does the root locus start and end?

9

Start at poles of OLTF ends at finite zeros or infinity of
OLTE. Number of branches = number of poles

2. Where is the locus on the real axis?

>=
=
n:
o
W
>
2
=1
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To the left of an odd number of real axis poles & zeros
3. What s the shape of root locus?

_Xp-Xxz ,
B = o (Centroid of asymptotes)
_ (21+1)180° . _ —
b, = os—— U0=01,...(#p —#n —1)

(Angles of asymptotes)

| The root locus is symmetric about the real axis!
=~==W 4. Where does the root locus break in or out?

~d (1+KL(s)) _
) ds

Solve 0 35




@ Root locus
how to determine manually stability/instability?
>
=S
2§ 1. Establish characteristic equation
gg 2. Replace s by jw (The boundary condition for

instability is at the imaginary axis = real (o) is zero)

3. Sum of real partis O

4. Sum of imaginary partis O

The maximum allowable K can now be calculated

36
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Root locus
how to determine manually stability/instability?

10s% —4s5+1
G(s)H(s) =——
S°+2S

1. Establish root locus  $°+2s+ K(10s* —4s+1) =0
(10K +1)s° +(2—-4K)s+ K =0

37
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Root locus
how to determine manually stability/instability?

10s% —4s5+1
G(s)H(s) =——
S°+2S

1. Establish root locus  $°+2s+ K(10s* —4s+1) =0
(10K +1)s° +(2—-4K)s+ K =0

2. Replacesbyjw (10K +1)(jw)*+(2—4K)jo+K =0
(2-4K)jo+K - (10K +1)w® =0

38
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Root locus
how to determine manually stability/instability?

10s% —4s5+1
G(s)H(s) =——
S°+2S

1. Establish root locus  $°+2s+ K(10s* —4s+1) =0
(10K +1)s° +(2—-4K)s+ K =0

2. Replacesbyjw (10K +1)(jw)*+(2—4K)jo+K =0

o4 )oK ~B0K 1 )70

3. Sum of real partis O

39



UNIVERSITY
OF APPLIED SCIENCES

Root locus
how to determine manually stability/instability?

10s% —4s5+1
G(s)H(s) =——
S°+2S

1. Establish root locus  $°+2s+ K(10s* —4s+1) =0
(10K +1)s° +(2—-4K)s+ K =0

2. Replacesbyjw (10K +1)(jw)*+(2—4K)jo+K =0

o4 )oK ~B0K 1 )70

3. Sumofrealpartis0 K —(10K +1)w’ =0
, K
(10K +1)

40
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Root locus
how to determine manually stability/instability?

10s% —4s5+1
G(s)H(s) =——
S°+2S

1. Establish root locus  $°+2s+ K(10s* —4s+1) =0
(10K +1)s° +(2—-4K)s+ K =0

2. Replacesbyjw (10K +1)(jw)*+(2—4K)jo+K =0

3. Sumofrealpartis0 K —(10K +1)w’ =0
, K
(10K +1)

a4, Sum of the imaginary partis O

41



Root locus
how to determine manually stability/instability?

10s% —4s5+1
G(s)H(s) =——
S°+2S

v

4. Sum of imaginary partis O (2—4K)a)=0

D=0
o
w;g
23
2
==

:>K:E=O.5
4

5. The maximum allowable K can now be calculated

Imaginary Axis (seconds %)

42

Real Axis (seconds™)




HOMEWORK
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>0 Stage TWO Exercises:
E 2
+ o * Problem 2
>i3 .
= Problem 5
=R  Problem 6
 Problem 8
* Problem9

* Problem 10




