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PART 1 FUNDAMENTAL CONCEPTS:. CONTROL SYSTEMS

Control systems are an essential part of modern engineering. They help us
automate and regulate machines, processes, and devices in our daily lives
and industrial environments. Without control systems, many technologies
we rely on would not function as smoothly or efficiently.

In this section, we shall introduce the most fundamental concepts that act as
stepping stones to build-up our knowledge in the field of classical control
systems theory.

1.1 Classical Control Systems

We have a 3-word title: “Classical Control Systems”. Easily, following the
most primitive intuition, we can break this title down into a couple of ques~
tions for clearification:

1. What is control?
2. What is a system?
3. What is a control system?

4. What are classical control systems about?

1.1 .1 What is control?

Intuitively, we refer to control as the act
of achieving what we desire. What we -
desire can be a numerical value of a o
physical quantity or a quantifiable state,
such as obtaining 220V from an electri-
cal socket, maintaining the' room temper-
ature around 23 degrees Celsius, or driv-
ing a car in a straightline.

In Fig. 1.1,.Jack, our imaginary charac-
ter, is driving his car. Jack wants to
go straight and maintain his direction.
Therefore, he is steadily holding the steer-
ing wheel. Occasionally, he needs to steer
slightly to maintain the direction due to Figure 1.1: Jack is driving.

a bump in the road or misaligned wheel

configuration. With his steering wheel control, Jack’s car is still going
straight as he desires. Jack is in control of his car’s direction.

1.1 .2 What is a system?

Almost everything can be a system!
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In the context of control systems engineering, what can be regarded as an
interesting system depends on the intended control objective.

Figure 1.2: The presence of a mysterious metal block.

In Fig. 1.2, two imaginary characters, Alice and Bob, are walking down the
road. They are blocked by a mysterious metal block on the ground. Bob
is thinking about his vacation in the summer; obviously, this large piece
of metal is not particularly interesting to him, and he has no.intention of
interacting with it. Hence, this mysterious piece of metal is definitely not an
interesting system for Bob.

Alice, however, is thinking about building a heat exchanger for an engineer-
ing project in her factory. This mysterious piece of metal might just be good
material for the heat exchanger! It could be.an interesting system for Alice
to study, particularly in terms of its specificsheat capacity. She might even
test it on the spot and gather some data:This mysterious piece of metal can
be a very interesting system for Alice.

To summarize, whether something can be regarded as an interesting sys-
tem depends on the control secenario and what the control systems engineer
desires from the system.\If‘something aligns with your interest, it can be
regarded as a system to be studied!

1.1 .3 What is a control system?

Combining;what we have discussed in the previous sections, a control sys-
tem is a'set’of engineered devices or systems that manage, command, direct,
or regulate the behavior of other devices or systems. It aims to achieve a
desired output by manipulating the flow of signals.

Unless particularly specified, the input of a control system should be the
desired output state or the reference point. The output is the actual per-
formance of the system. Ideally speaking, if the system is functional as
we intended, the output should match the desired state, which is our input.
This control system description can fit from a collective large scale system
that are composed of multiple sub-systems to a small sub-system that can
be regarded as a stand-alone control system.

For example, consider a simple home heating system. You set a desired
temperature, and the system turns the heater on or off to maintain that
temperature. This is a basic control system.

[lustrated in our example in Fig. 1.1, the desired output for Jack is that the
car he is driving continues to move in a straight line. He is manipulating
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the steering wheel to achieve this desired result. The steering angles can
be regarded as a flow of signals. If we look closer, we might observe how
the initial ‘signal“traverses through the internal mechanisms of the car and
ultimately affects the mechanical angle of the wheels, thereby maintaining
the direction of the vehicle. The output of this control system is eventually
how the car behaves.

Control systems engineering primarily treats system dynamic behavior, thus
we study the changes in the system output related to the input. Naturally,
when talking about changes of a system over a physical quantity (mostly
this is time in control systems), we can obtain a mathematically models that
describe such dynamics, especially utilizing differential equations.

1.1 .4 What are “classical” control systems about?

Classical control is called classical because it represents the earliest system-
atic approach to control system design, developed before the rise of modern
control techniques like state-space methods, model predictive control(MPC),
fuzzy logic control, and control algorithms using mechine learning tech-
niques, etc. Despite its age, classical control remains widely used due to
its simplicity, robustness, intuitive graphical tools, and effectiveness in many
practical applications. In addition, classical control systems-often requires a
precise system model, which often require specific and ‘accurate description
of physical processes. This makes classical control systems theory a solid
fundation of the more advanced techniques.

Classical control systems deals with:
causal single-input-single-output(SISO) linear time-invariant(LTT)
systems.

We shall look at these properties one by one.

1.1 .5 Causality:.cause before effect

A causal system does not anticipate the future input. Its reaction is only
based on the history and/or the present.

Definition 1 (Causal System). A system 8 described by an input-output

relationship x(t) 5, y(t) is causal if, for any time to, the output y(t) at time
to depends only on the input x(t) for t < to.

y(to) =8(x(t)) Vt<to

If the output y(t) at time t = to depends on inputs x(t) that span among
the past, and/or the present, and the future: t € IR, then the system is non-
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causal. If the output y(t) at time t = to only depends on future inputs x(t)
where t > to, the system is anti-causal.

Consider a home heating control system, the differences between causal,
non-causal, and anti-causal systems are as follows:

¢ Causal system: A home heating system adjusts the temperature based
on the current and past readings. It does not know the future tempera-
ture; it reacts only when the room gets too cold or too hot.

¢ Non-causal system: A system that turns on the heater today because
it knows it will be very cold tomorrow comparing to the temperature
today. This kind of control requires knowledge of the future, which is
impossible in real-time systems.

e Anti-causal system: A system that turns on the heater today because
it knows it will be very cold tomorrow irrespective-of the current tem-
perature. This kind of control only requires knewledge of the future,
irrespective of the present and the past. Anti-causal systems are impos-
sible and not practical for real-time systems.

Non-causal systems are often used in offlin¢ simulations and processing like
offline signal processing, image processing, distortion recovery, or predictive
models. While anti-causal systems are hypothetical, they recently found
their spot in the theoretical research in the field of quantum mechanics.

We shall foucs on causal systems in the following content becuase methods
developed for classical control systems are often designed for causal sys-
tems.

Moreover, do keep in mind that:

Real-time control systems acting on real physical systems in the real
world must always be causal.

1.4..6 Single input single output(SISO) systems

Classical control systems deals with SISO systems that one input signal af-
fects the system and one desired output signal is treated as the system’s
response. A common representation of the SISO system is:

M Outputy(t) (1.1)

Inputx(t)
In time domain description, the output function y(t) is obtained by time
domain convolution between the input function x(t) and the system’s §
impule response function h(t).
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If the system § is causal, the comvolution can be over the non-negative time
axis till the present time:

t
y(t) = Jo x(t)h(t—1)dt (1.2)

In practice, many existing multi-input multi-output(MIMO) systems are hard
to analyze. Changes in one sub-system can result in un-desireable change in
other interacting sub-systems.

Decoupling is a widely deployed practical approach that can decouple cer-
tain MIMO systems into seperated SISO sub-systems to mitigate the mutual-
influence problem. There are several existing mathematical tools for decou-
pling MIMO systems, including singular value decomposition(SVD), relative
gain array(RGA), Niederlinski index, decentralized stability condition, etc. If
a MIMO system can not be decoupled, then data-driven methods like MPC
or neural networks are often deployed.

1.1 .7 Linearity

Definition 2 (Linear System). A system 8§ : x(t) 5, y(t)'is a linear system
if and only if 8 satisfies the superposition principle that includes the homo-
geneity property and additivity property described as follows:
Homogeneity:

x(t) Syt) = axft) > ay(t), VaeR.
Additivity:

x1() Sy (t),x2t) Bya(t) = xa(t)+x2(t) Sy (t) +yal(t).

In total we shall obtain:
8 s
x1(t) = yi1(t),x2(t) = ya(t)
=

oxt (1) + Bx2(t) 2 oyr (1) + Py2(t) Ve B € R.

Linear systems play a crucial role in classical control systems theory. Many
techniques we will cover in later sections are primarily designed for linear
systems. Even though many real-world systems are non-linear, they can of-
ten be linearized using linear approximation for its operating range around
an equilibrium point using Taylor series expansion.
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1.1 .8 Time-invariance

A system is time-invariant means that the response of the system does not
depend on the absolute time given the same initial state.

Definition 3 (Time-Invariant System). A system § described by an input-

output relationship x(t) LN y(t) is time-invariant if and only if:

x(t) Syt) = ylt—to) Sylt—to), Vo

We shall provide an intuitive explanation of
time-invariance. In Fig. 1.3, Jack is going down \
the stairs. Given the same state of Jack and the Cto..
stairs, the process of Jack going down the stairs

is the same. It does not matter if Jack is go-

ing down the stairs today, or tomorrow, or at

any other time. The process of Jack going down

the stairs remainds the same, thus the process.is &
time-invariant.

Another practical example would be the heat
dissipated through the same resistor that fol-
lows the equation Q(t j fend 12 JRdt. It does not matter at which time
we supply electricity to the re51stor elther in the morning or in the afternoon
or evening or midnight. Aslong as it is the same resistor, the same amount
of current, and the same duration, the total amount of dissipated heat are
the same. The heat dissipation process of a resistor is time-invariant.

Figure 1.3: Jack on the stairs.

1.2 Control-loops

Jack wants to practice his balancing skills by

standing on one foot. He discovered one phe- pom
nomenon demonstrated in Fig. 1.4. When Jack =._
closes his eyes, he can only keep his balance g = ﬁ@

for 10 seconds at best. As Jack opens his eyes, =

he can keep his balance without a problem for

a least 2 minutes!
l3e §
If we visualize the process when Jack is keep- =

ing balance with his eyes closed, we can ob-
tain such a diagram:

input: “keep balance” | — |Jack —>

Because Jack had his eyes closed, Jack can only rely on his sense of position
to balance himself. But Jack has a bad daily posture and reads too much
from his phone while keeping his head down, this creates mucle and spine

Figure 1.4: Jack standing on
one foot.
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problems that compile errors in Jack’s nerve system that distorts his sense of
balance. While Jack has his eyes closed, he can not utilize visual reference to
calibrate his sense of balance." The errors'compile easily and rapidly'in his
brain, thus Jack loses his balance quickly with his eyes closed.

When Jack opens his eyes, his visual senses

provide feedback to his brain about his Aol ﬂ wllack /

body position, helping him recalibrate his it Cmgatinc) " 2%
sense of balance. With the visual feedback { Tazk } S oo
provided by his eyes, Jack can correct the —

errors and keep his balance for a prolonged

period of time. This process is visualized Figure 1.5: Jack keeping balance
in Fig. 1.5. with visual feedback.

In classical control systems, we typically work with two types of systems:
o systems without feedback, we refer them as: open-loop systems,
e systems with feedback, we refer them as: closed-loop systems.

Open-loop systems are sometimes called feed-forward systems, there is only
one direction for signals to flow. Closed-loop systems not ofily contain sig-
nals flowing from input to output, but there are signals. with reverse direc-
tion, typically used for comparison and computation with.the foward signals
for error correction purposes.

Since we are sending signal backwards for cemparison using a feedback
loop, the sign of the comparison between the forward signal and the feed-
back signal differentiates the type of feedback loops:

1.2 .1 Positive feedback

A positive feedback loop addsap-the forward signal and the feedback signal.
The feedback signal reinforee the input signal to build a momentum. There
are electronic guitars thatrutilize the positive feedback with amplifiers to
increase the amount of\distortion and gain to achieve the overdrive sounds.
Sometimes positive feedbacks are used in circuit design to create oscillators
for specific needs. You may also find positive feedback loops in biological
processes like blood clotting.

1.2 .2 Negative feedback

A negative feedback loop finds the difference between the forward signal
and the feedback signal. If the 2 signals to be compared are the input signal
X and the output signal Y, naturally we may obtain the error E = X —Y.
The error E = X —Y can be interpreted as the difference between the true(Y)
and desired(X) output. Based on the error, the feedback loop naturally self-
regulate the error with an carefully engineered controller.

A classic example of negative feedback control is the human body’s temper-
ature regulation system. The hypothalamus acts as a biological thermostat,
continuously monitoring body temperature and triggering corrective actions
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to maintain homeostasis. If the body temperature rises above normal, mech-
anisms such as sweating and increased blood flow to the skin activate to
dissipate heat. Conversely, if the temperature drops, shivering and vasocon-
striction help generate and conserve heat.

Another classic example is the cruise control system in a car, which regulates
speed by adjusting the throttle. If the car slows down due to an uphill
slope, the system detects the decrease in speed and increases engine power
to compensate. Conversely, if the car speeds up when going downhill, the
system reduces throttle to maintain the set speed.

Negative feedback is also widely observed in nature, such as in weather
regulation. For instance, cloud formation plays a crucial role in balancing
Earth’s temperature. When surface temperatures rise, increased evaporation
leads to more cloud cover, which in turn reflects sunlight away from the
surface, reducing further heating. Conversely, when temperatures drop, re-
duced cloud formation allows more sunlight to reach‘he Earth’s surface,
helping to warm it up. In all these cases, the negativé‘feedback mechanism
ensures that deviations from the desired value are corrected automatically,
enhancing stability and system performance.

Such kind of self-regulation feedback mechanisms are the most commonly
seen control feature in engineering systems and natural phenonmena. For
the remainder of this book, we will\primarily focus on the analysis and
design of negative feedback systems.

1.2 .3 The standard model

For the reason that negative feedbacks are so common and important, we
demonstrate a standard unit negative feedback model in Fig. 1.6. We will
refer the model in Fig. 1.6 as the base model or the standard model for the
rest of this book:

Erro Controdler Privss
Inputl X r E Oudput ¥
= Hgis) = H,(s) -

Figure 1.6: Our base model: negative unit feedback closed-loop model.

The standard model depicted in Fig. 1.6 represents a standard negative unit
feedback control loop. In this framework, the input signal X is compared
with the output signal Y at the summation block. The difference between
these two signals forms the error signal E, which serves as a measure of the
difference between the desired and actual system behavior.

This error signal is then processed by the controller H., which generates
the appropriate control action to minimize the error. The controller’s role is
crucial as it determines how aggressively or smoothly the system responds
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to deviations from the desired state. The controller’s output is then fed into
the process (plant) H,,, which represents the system being controlled.

After passing through the process, the output signal Y is generated and
subsequently fed back into the summation block for comparison, completing
the closed-loop system. The feedback mechanism ensures that the system
dynamically corrects itself by continuously adjusting the control input based
on the observed output.

The time-domain computation of the output y(t) is rather complicated com-
paring to open-loop systems thus it is omitted in this text. In later sections,
we shall demonstrate a easier way to analyze the signals in control systems
in the complex ‘s’-domain using Laplace transform.

This standard model provides a unified and simple framework for stabil-
ity analysis, disturbance rejection, and performance enhancement, making
negative feedback control an essential approach in engineering and contrel
systems.

With feedback we can better:
deal with system dynamics,
be robust to uncertainty,
realize a modular operation,
gain more knowledge of the environment.
But feedback sometimes brings us trouble:
increased system complexity,
potentially affect the desired system characteristics like stability,

potentially amplify. noise and interference.

1.3 Response'of a system

System dynamics can be modeled by differential equations. The complete
solution of a differential equations is the sum of the homogeneous solution
and the particular solution. The existence of these solutions suggests that:

The homogeneous solution indicates that the system has an natural re-
sponse. This natural response describes the physical characteristics
of the system iteself based on the initial condition without any input
added. Sometimes, the natural response is also called a zero-input
response(ZIR).

The particular solution indicates that the system has an forced response
dependent on the particular input given without any initial condition. Some-
times, the natural response is also called a zero-state response(ZSR).
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1.3 .1 Steady state and transient state of a response

Whenanalyzing dynamic systems, we typically observe two main phases in
the system response: the transient state and the steady state. These phases
describe how the system behaves over time as it reacts to an input change.

:!I ¥ ¥
II |\Ehanging) it changing)
Il
f
i - — &
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Figure 1.7: A visualization of transient state and steady state in the output time
response plot.

The transient state refers to the initial.phase of the system response, where
the output undergoes relatively significant changes before reaching steady
state. During this period, oscillations, overshoot, and damping effects are
commonly observed as the system works to settle into its final value. The
transient state is characterized by fluctuations, general trend of rising or
falling, and even instability.“Its duration depends on the system dynamics,
including factors such as natural frequency, damping ratio, time constant,
and the provided input.

As time progresses, the system transitions into the steady state, where the
output stabilizes and ceases to exhibit significant changes. In this phase,
the system reaches equilibrium, meaning any remaining variations in the
output are minimal or due to small external disturbances. The steady state
represents the long-term behavior of the system and is often the desired
operating condition in control system design.

Figure 1.7 illustrates these two states. The transient response occurs at the
beginning of the output signal, during which the system dynamically ad-
justs to a new condition. Once the output value gets close to the reference
value from the input or stablize about a constant value, the system enters
the steady-state phase, where the response remains constant or follows a
predictable pattern based on the input reference.

To what extent can we determine that a system has entered the steady state?
Must the system exactly match the input reference or converge to a single
constant value? Or is a certain amount of error or fluctuation acceptable?
We encourage the reader to reflect on these questions, as we will explore
them in greater detail in a later section.
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Understanding the distinctions between transient and steady states is ¢rucial
in control system analysis, as it allows engineers to analysis and evaluate
system characteristics and overall performance. The goal in many control
applications is to minimize the transient ripples and ensure a smooth and
fast transition to the steady-state condition.

1.4  Stability and intuitions

Stability is a fundamental property of a control system that determines
whether the system will return to equilibrium after being subjected to ex-
ternal disturbances. The illustrations in Fig. 1.8 provide an intuitive way to
understand different stability scenarios through the analogy of Jack being
pushed and how he responds to the disturbance.

lll.ul"i"i"'.i L

lI,-"'.i'-i'..l e ]

(a) Jack saying hi! (b) Jack’being pushed

P .
P oA -
%23 M P /
= - Y 4 * EMKL_?
() (d) (e)

Figure 1.8:'Scenarios of Jack is being pushed.

In Fig. 1.8(a), Jack.is"saying hi while standing up straight on one foot, rep-
resenting a system-at equilibrium. In Fig. 1.8(b), a mysterious person is
pushing Jack, exerting an external force on him. This symbolizes an external
disturbance affecting the system. The lower illustrations, labeled (c), (d), and
(e), depict how much power over time Jack needs to consume to counter the
mysterious person.

o Fig. 1.8(c):

If Jack is pushed and he gradually returns to his original position, the
system is considered stable. This represents a SISO system where dis-
turbances eventually decay to zero over time. In terms of power, the
system initially expends energy to counteract the disturbance, but this
energy dissipates over time, leading to a return to equilibrium. The
shaded region indicates the transient response where power dimin-
ishes gradually.

When Jack is being pushed, he initially consumes power to resist the

1"
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disturbance. Over time, the power consumption decreases as he re-
gains balance and eventually stabilizes. This corresponds to an stable
system, where the system naturally returns to equilibrium without re-
quiring sustained effort. The total energy calculated by finding the
integral of power with respect to time is finite. Jack only needs to
consume some amount of energy to be able to balance himself again.

e Fig. 1.8(d):
In this case, Jack does not return to his original state, but neither does
he drift away uncontrollably. Instead, he maintains a new state or oscil-
lates indefinitely with a constant amplitude. This also corresponds to
a stable system. The shaded region indicates sustained power usage
without decay.
There exist some crucial differences comparing to the scenario in Fig. 1.8(c)
where jack returns to the original status. The total energy calculated
by finding the integral of power with respect to time is infinite because
the power expended by Jack does not decay over.time. Jack needs to
consume an infinite amount of energy to be.able to balance himself
again which is not feasible at all. Jack will become tired after all. But
in the meantime, the power required is finite and has an upperbound.
That means that if, ideally, we have/seme constant supplement that
can compensate the energy consumed by Jack, Jack can then sustain
his balance!

o Fig. 1.8(e):
If Jack is continuously pushed and he keeps losing balance, he needs to
consume increasing amounts of power to counteract the growing dis-
turbance. This reflects an unstable system, where the power required
to maintain control do not have an upperbound and keeps rising, even-
tually leading to a unbounded energy consumption and system fail-
ure. Jack will fall into the ground, and perhaps even get injured.

These physical interpretations highlight how SISO control systems react to
external’ influences. This example related to power shed light on two impor-
tant factors on the nature of stability:

1. finite energy;
2. bounded power.

Obviously, having bounded power is a weaker constraint comparing to hav-
ing finite energy. We shall discover more about how these constraints are in-
corporated into different notions of stability. A well-designed control system
should ensures stability, preventing unbounded power usage and enabling
predictable, controlled behavior in engineering applications.

1.5 Mathematical definition of stability

There exist a wide variety of notions and definitions of stability for control
systems. We shall introduce some of the most widely used stability defini-
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tions in mathematical terms such that the reader can conduct the following
analysis to systems described by ordinary differential equations.

1.5 .1 Bounded-input bounded-output (BIBO) stability

Definition 4 (Bounded-Input Bounded-Output (BIBO) Stability). A system
is BIBO stable if, for every bounded input x(t) = [u(t)| < M, the output
remains bounded:

sup [[y(t)[loo < 0.
>0

Recalling a general SISO system depicted in Eq. 1.1, in which time domain
output is obtained by the convolution between the input and the system’s
inpulse response:

y(t) = J:O x(T)h(t—1)dt

If we assume that x and h are both continuous, when we provide an bounded
input x over [0, 00), y should also be bounded over [0, co)for the system to be
BIBO stable . Thus, the convolution integral needs to exist over the interval
t € [0,00).

Note that x(t)h(t — 7) should be bounded for the convolution integral to be
integrable. Thus, the system is BIBO stable.if.and only if h is bounded over
the interval t € [0, o).

The above analysis leads to the essential condition for BIBO stability down
to the following essential requirement :

For a causal LTI system ‘with impulse response hs(t), the system is BIBO
stable if the impulse response is absolutely integrable:

J [hs(t)ldt < oo
0

This ensures that the system’s response does not grow unbounded for
any finite input.

BIBO stability is the most commonly used stability definition in classical
control systems. Unless specifically mentioned, we shall treat BIBO stability
as our default stability notion.

1.5 .2 Equilibrium points and system linearization

Before we diverge into different defintions and types of stability, we need to
know what is an equilibrium point.

13



14

I 1.5_Mathematical definition of stability

Definition 5 (Equilibrium Point). Consider an arbitrary ordinary differen-
tial equation:
dy
— =f(t,x(t)).
)

A point ye € R is an equilibrium point if f(ye) =0, Vt € R.

An equilibrium point is a constant solution to an differential equation, other
names are stationary point, singular point, critical point, and rest point. A con-
stant solution indicates that if the system start from this equilibrium point it
will rest on this equilibrium point.

With careful observation, it is convenient to deduce that if f(ys) = 0 for an
equilibrium point ye. we may use Taylor’s Theorem to perform.Taylor series
expansion of f(y) about the point (ye, f(ye)):

© ¢(n)
fly) =) P2 o) oy pmn

n!
n=0
= f(ye) + ' (ye) (y —ye) + f %"3) (G55 Ye)” + f ;Je) (Yy—ye)*+
(n)
o+t n(!w (Y—ye)™ +OQ((y—ye)™*")

This Taylor series expansion areund an equilibrium point is particularly use-
ful when we are handling an“non-linear system. We can linearize the non-
linear system by keeping the linear terms till the first order derivative. We
can do this primarily due to the fact that as y — ye, higher-order expo-
nential terms of ||y = y.|| decreases much much faster than the linear term
Y —Ye such that-they becomes negligible. For small perturbations around the
equilibrium, the effect of higher-order terms are insignificant if f'(ye) # 0.

Then we obtain an linearized approximation of f(y) around the equilibrium
point(ye, f(ye)). Putting f(ye) = 0 in, the linearized system now becomes:

fly) =f'(ye)y.

After linearization, the system become trivial and the stability of the lin-
earized system around that equilibrium point solely dependent on the deriva-
tive f'(ye) of f(y) at the equilibrium point ye.

o f'(ye) < 0, the system can return to the equilibrium point,
o f'(ye) > 0, the system cannot return to the equilibrium point.

An equilibrium point ye is a logical choice to base the linearization technique
when the system is suspected to oscillate around this equilibrium. Such that
we may most likely to obtain a linearized function that minimizes the lin-
earization error within acceptable torlerances. There are occassions that the
Taylor series expansion is done about another point other than equilibrium
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but that would be very much system dependent. For now, by default, we
perform liearization about an equilibrium point.

If the first derivative term at the equilibrium point f'(ye) = 0, the quadratic
term " (ye) or the first non-zero term of lowest order becomes the domi-
nant term. In this situation, it is meaningless to perform linearization at the
equilibrium and ignore the higher-order terms. Meanwhile, it is also not a
good idea to apply linearization if the pertubation is expected to be large,
then linearization does not provide enough accurancy in the analysis and
the linearization error becomes significant.

1.5 .3 Lyapunov stability

A system with an equilibrium point y. is Lyapunov stable if, for every small
perturbation e, there exists a d such that:

[y(0) —yell <6 = [x(t) —yel <e, Vt=0.

This means that if the system starts close to the equilibrium point, it remains
arbitrarily close over time.

1.5 .4 Asymptotic stability
If y(t) not only remains close but also converges to y. as t — oc:

lim y(t) = yer

t—o0

1.5 .5 Exponential stability

If the convergence occurs at an‘exponential rate, meaning there exist con-
stants ¢ > 0 and A > 0 such_that:

[9(8) = yell < ce™ ™ [y(0) — e
Exponential stability is a stronger condition than asymptotic stability.

1.5 .6 Unstable systems (Instability)

A system is unstable if its response grows unbounded over time. An unsta-
ble system cannot return to equilibrium without external control interven-
tion.

An example of a unstable system is:

The differential equation above indicates that the system is an integrator. If
we let x(t) be a unit step signal, which is perfectly bounded. The output
y(t) becomes a ramp signal with slope equals to 1. Obviously, as t becomes

15
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larger, the output signal is going to continusouly increase at a constant rate
and the output is unbounded.

1.5 .7 Marginal stability

A system is marginally stable or sometimes called critically stable if for
some bounded input the output does not become unbounded over time but
does not necessarily converge to an equilibrium either. Marginal stability
is often used to fill the gap at the boundary between unstable systems and
stable systems. In reality, the time response of a marginally stable system
often appears to be an undamped osciallation.

With different inputs, a marginally stable system can also become unbounded
(thus unstable) even if the input is bounded. This indicate that a marginally

stable system can not be BIBO stable.

We utilize the example system with impulse response h(t):
h(t) =sint

to demonstrate the statement above.
If the input x5 (t) is an unit impulse function d(t), the output y;s(t):
ys(t) = [xs * h(t)
= [0 xh](t)
=h(t) =sint
The output is bounded for an impulse input.

If the input x,(t) is an unit step function u(t) = 1, t € [0,00), the output
Yul(t):

Yu(t) = [uxhi(t)
t
= J sintdt
0

= —cosTl§

=1—cost

The output is bounded for a step input.

If the input x(t) is an sine function sin t, the output y(t):
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t
y(t)y= L h(t)x(t—7) dt

t
= J sintsin (t — 1) dt
0
Sincesin (t — ) =sintcost—costsinT,

t

t
= sintJ sin’tcos*td’c—costj sin? tdt
0 0

We know sin(2t) = 2sinTcos T,

and sin’ T = # ,
= sint Jt sin 2t dT—COStJt —1 —COosst dt
_ —sintcos(2t) sint tcost eostsin(2t)
B 4 T ) 4
_costsin(2t) —sintcos(2t)«¢=sint tcost
B 4 2
_ —sin(t—2t) +sint «tcost
B 4 ~r 2
_ sin(t) —tcost
2

Obviously, the tcost in is unbounded. Hence the output y(t) of the system
becomes unbounded even if a bounded input.is provided. The system is not
BIBO stable.
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1.6 Exercises

1. (Safety first!) Balance yourself on one foot with your eyes open for at
least 30 seconds, then close your eyes and keep trying.

a) How many time can you keep your balance with your eyes closed?
b) Do you feel the difference?

c) Describe the control system responsible for keeping you from
falling down.

d) Try to draw a block diagram. Explain what went wrong when
you close your eyes.

2. Identify 5 control systems you encounter in daily life. {Identify and
draw the control loop, be specific.

3. Think about at least 5 factors in practice that will\make a closed loop
negative control system operate in an undesireable way?

4. Why is stability so important?

5. Are the following systems causal LT1 systems?

d d
a) WU = &4

2
b) U 4 x(t) = SX(U LAY ()

o) Y =x(t)

d) WY — ¢ xt)

e) W iy(t) +2

6. Are thenatural response and forced response unrelated to each other?
Why?

7. Why can we just simply add natural response and forced response for
LTI systems?

8. Find the steady-state value of these time-domain output functions:
a) y=e 2t 41

b) y=e?t+et—10



