TEST EXAM THREE Μ

Introduction & Instructions

This is the regular exam of BCS 2024 MAY.

- Duration: 3 hours
- Number of problems: 9
- Allowed material: Writing gear, calculator
- Calculation of final scores: score_obtained of the round to 1 decimal
- Note for grading: correct solutions without reasoning do not grant points.

Question 1 (10 pionts)

Give the overall transfer function $H(s) = \frac{Y(s)}{R(s)}$ of this block diagram in

Show at least two intermediate steps used to find the solution.

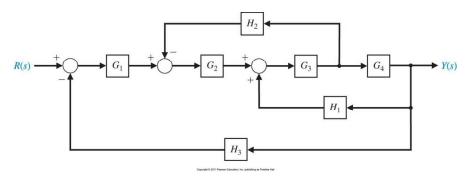


Figure M.1: Block diagram.

Question 2 (10 pionts)

Sketch only the gain part $|H(j\omega)|$ of the Bode diagram of H(s):

$$H(s) = \frac{s(s+100)}{(10s+1)(s+10)}$$

Explain how you obtained your sketch (show intermediate steps).

Question 3 (10 pionts)

The input to system H(s) is a step function. Find the output x(t) of the system if the transfer function H(s) equals:

$$H(s) = \frac{6s^2 + 2s + 8}{s^2 + 2s + 4}$$

Explain how you obtained the solution (show intermediate steps).

Question 4 (15 pionts)

Determine the transfer function $H_P(s)$ and its parameters K_P , τ_P and τ_ν from the following step response graph in Fig. M.2.

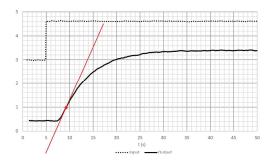


Figure M.2: The step response data

Assume the process to be a delayed first order process. The point of inflection and tangent are already drawn. Use the graph in the answer sheet to show how you find the parameters.

Sketch sheet problem 4



Figure M.3: The step response data

Question 5 (10 pionts)

The three poles and the two zeros in the complex plane of a system H(s) = $\frac{Y(s)}{X(s)}$ are shown below in Fig. M.4. The DC-gain of the system is 3. Determine the differential equation. Explain how you determined the DE.

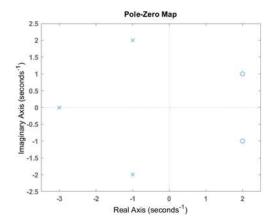


Figure M.4: Pole-zero map

Question 6 (15 pionts)

Given the following Bode diagram in Fig. M.5 of an open loop process with transfer function G(s). The process is placed in a normal feedback loop (negative feedback and unity feedback) and a controller is used with a gain K.

- 1. The input of the system is given by $u(t) = \cos(0.25t)$. What is the analytical expressions for the output x(t)? Explalin how you obtained your answer.
- 2. What is the stability of this system? Explain your answer.

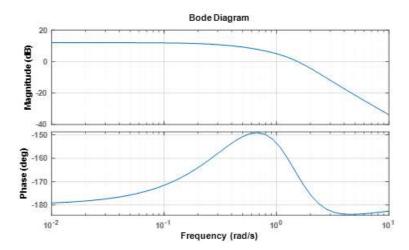


Figure M.5: Bode diagram

Question 7 (10 pionts)

The following Nyquist diagram in Fig. M.6 is obtained from the process G(s) with a P-controller K=1.

$$G(s) = \frac{-s^4 - 12s^2 - s - 1}{0.6s^4 + 2.1s^3 - 2s^2 + 3s + 2}$$

The four open-loop poles of G(s) are located at:

$$-4.4609 + 0.000i$$
 $0.7121 - 1.0517i$ $0.7121 + 1.0517i$ $-0.4632 + 0.000i$

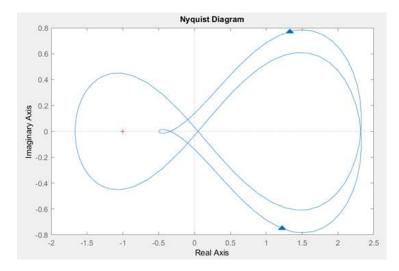


Figure M.6: Nyquist diagram

Question 8 (10 pionts)

What is the Laplace transform of the following function f(t) as shown in Fig. M.7.

Explain how you obtained your answer (show intermediate steps).

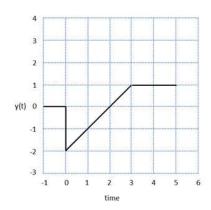


Figure M.7: f(t)

Question 9 (10 pionts)

Consider a system with a controller and process and a unity feedback. This controlled system has the following time response on a unit step input (step value 1 at t = 0).

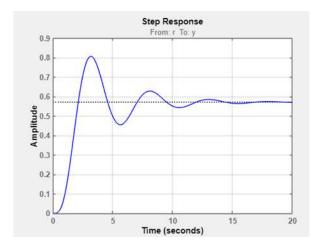


Figure M.8: Step response

The observed time response is too wild (too much overshoot and too many oscillations), and does not reach the desired set value of 1.

- 1. In what direction (higher or lower) should the control engineer adjust the value of the gain K of the proportional-only controller to obtain a smoother response with less overshoot? What other effects does this have? Explain your answer.
- 2. What should the control engineer modify in the controller to remove the steady state error (reduce to zero)? Explain your answer.