N TEST EXAM FOUR

Introduction & Instructions

This is the resit exam of BCS 2024 MAY.

• Duration: 3 hours

• Number of problems: 9

• Allowed material: Writing gear, calculator

• Calculation of final scores: score_obtained , round to 1 decimal

 Note for grading: correct solutions without reasoning do not grant points.

Question 1 (10 pionts)

Give the overall transfer function $H(s) = \frac{Y(s)}{R(s)}$ of this block diagram in Fig. N.1.

Show at least two intermediate steps used to find the solution.

Figure N.1: Block diagram.

Question 2 (10 pionts)

1. Determine $H(s) = \frac{Y(s)}{X(s)}$ for the following differential equation.

$$3y''' + 6y'' + 15y' = x' + 4x$$

(assume that all initial conditions are zero)

- 2. Draw the poles, zeros in the complex plane. Also mention the gain K.
- 3. What is the DC gain of H(s)? Explain the answer you get.

Question 3 (15 pionts)

Determine the transfer function $H_P(s)$ and its parameters K_P, τ_P and τ_ν from the following step response graph in Fig. N.2.

Figure N.2: The step response data

Assume the process to be a delayed first order process. The point of inflection and tangent are already drawn. Use the graph in the answer sheet to show how you find the parameters.

Sketch sheet problem 3

Figure N.3: The step response data

Question 4 (15 pionts)

Sketch the magnitude and phase part of the Bode diagram of H(s):

$$H(s) = \frac{30s(s+15)}{(s+5)^2}$$

Explain how you obtained your sketch.

Question 5 (10 pionts)

1. Find the function h(t) of the following transfer function H(s):

$$H(s) = \frac{2s+4}{s^2+2s+7}$$

2. If G(s) is the transfer function of a system. Will there be overshoot for a step input? And if there is overshoot, how much will that overshoot be?

$$G(s) = \frac{1}{s^2 + 2s + 3}$$

Question 6 (15 pionts)

Given the following Bode diagram in Fig. N.4 of an (open loop) process with transfer function G(s).

- 1. What is the gain margin as shown in this Bode diagram?
- 2. Assume G(s) is placed in a negative feedback loop with unity feedback. What can be the gain. What can be the gain K (with K > 0) of the controller such that the phase marjin of the system is 45° ?

Figure N.4: Bode diagram

Question 7 (10 pionts)

The following Nyquist diagram in Fig. N.5 is obtained from the process G(s)with a P-controller K = 1.

$$G(s) = \frac{-s^4 - 6s^2 - s - 1}{0.6s^4 + 21s^3 - 15s^2 - 2.51s - 2}$$

The four open-loop poles of G(s) are located at:

$$35.7036 + 0.000i -0.7179 + 0.000i 0.0072 + 0.3606i 0.0072 - 0.3606i$$

Figure N.5: Nyquist diagram

Question 8 (10 pionts)

What is the Laplace transform of the following function f(t) as shown in Fig. N.6.

Explain how you obtained your answer (show intermediate steps).

Figure N.6: f(t)

Question 9 (5 pionts)

A PID-controller has three distinct functions, the P-, I- and D-action. Describe the purpose of each function.