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Python Data Types

You do not need to declare variables in Python.

Dynamically typed

int, float, str, bytes, list, tuples, dictionary, set, Boolean, file,
NoneType
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Dynamically typed vs Statically Typed

Do type checking at runtime. (types are not associated
with variables)

Do type checking before runtime. Typically at compile
time. (compile C file: TypeERROR)
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Python Numbers

Python store numbers in binary, with a variable number of bits.
(depends on the memory available)

Integers 1, -1, 0b10011010(binary), 001247(octal), ox3ad7 (hex)
Floating point 1.0, 1.2345, 2.71828e-25, 8e12
Complex numbers 3+4j, 3j, 3.14-2.71

Dynamically ‘stretched’ to the upper most compatible type
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Something interesting
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Something interesting




Something interesting

0.1 = !
T 10
In binary
1
1010
(Binary)Division:
1/1010 = 0.0001001001001001001......
= 0.0001
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But, hey! Wait a minute...
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Something interesting
>>> 0.3 - 0.2
0.09999999999999998
>>> 0.1
0.1
>>> 0.2
0.2

How come the Python
interpreter know 0.1
exactly when I call it??
Isn’t that 0.1 exact?

>>> 0.3

9.3

>>> 0.1 + 0.2
0.30000000000000004
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https://docs.python.org/3/tutorial/floatingpoint.html

Something interesting — The Truth

Stop at any finite number of bits, and you get an approximation. On most machines today, floats are approximated using a binary fraction with the
numerator using the first 53 bits starting with the most significant bit and with the denominator as a power of two. In the case of 1/10, the binary
fraction is 36028797@1896397 / 2 ** 55 which is close to but not exactly equal to the true value of 1/10.

Many users are not aware of the approximation because of the way values are displayed. Python only prints a decimal approximation to the true
decimal value of the binary approximation stored by the machine. On most machines, if Python were to print the true decimal value of the binary
approximation stored for 0.1, it would have to display

»3» 8.1
8.l1886800060000088055511151231257327821181583484541815625

That is more digits than most people find useful, so Python keeps the number of digits manageable by displaying a rounded value instead

s3>+ 1 / 18
8.1

Just remember, even though the printed result looks like the exact value of 1/10, the actual stored value is the nearest representable binary
fraction.

Interestingly, there are many different decimal numbers that share the same nearest approximate binary fraction. For example, the numbers 8.1
and @.1eeeeee0e0eeeeeel and ©.1000000000000000855511151231257827021181583484541815625 are all approximated by 36828797081856397
/2 ** 55_5ince all of these decimal values share the same approximation, any one of them could be displayed while still preserving the invariant
eval(repr(x)) == x.

Historically, the Python prompt and built-in repr() function would choose the one with 17 significant digits, @. 16e8ase0eseesesanl. Starting with
Python 3.1, Python (on most systems) is now able to choose the shortest of these and simply display 8.1.

Note that this is in the very nature of binary floating-point: this is not a bug in Python, and it is not a bug in your code either. You'll see the same
kind of thing in all languages that support your hardware’s floating-point arithmetic (although some languages may not display the difference by

defaylt orin all cutodt medesy,.


https://docs.python.org/3/tutorial/floatingpoint.html

Python Strings

‘This is a piece of python string’
“This is a piece of python string”
““Youcanuse“in‘and’’”’
‘Or use black slash like \’’
‘Double quotes “”’ can be printed inside single quote’
“Single quotes ¢’ can be printed inside double quote”

“ 4 HUString with
multiple lines

) 1 "N
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Python Identifiers

What is an identifier in python?

simply: names of variables, functions, classes, class
Instances, etc.

* Be aware of the reserved keywords of Python. (voucanfindthe

complete list easily in our textbooks.)

e (ase sensitive
e Should not start with numbers

* No special symbols allowed, including blank spaces
* No length limitation
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Python Strings

Python str use Unicode characters by default
Default output encoding: UTF-8

(but sometimes depends on your exact machine & OS settings)

Use backslash\ as escape characters
Or use the r-prefix in front of the string text

Other prEfiX: U, r, b, f(startingfrom Python 3.6)

Use encode(), decode() methods to alter the encodings

@ UNIVERSITY
OF APPLIED SCIENCES https://docs.python.org/3.11/library/codecs.html#tstandard-encodings



https://docs.python.org/3.11/library/codecs.html#standard-encodings

Python Operators

Arithmetic operators: Bitwise binary operators:

+ add, N XOR bitwise addition,

- subtract, | OR 0 if both 0 otherwise 1,

* multiply, & AND - bitwise multiplication,
** power, ~ complement,

[ divide, >> shift left bit,

/[ truncate, << shift right bit,

% modulo,

(@ matrix multiplication, Comparison operators:

>. <L, =, == ! =, >=, <=
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Python Operators
Logical operators: and, or, not
ldentity operator: is, is not

Membership Operators: in, not in
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Demo
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Python Sequences and Indexing

Built-in sequences: list, str, tuple, bytes.

Each element in the sequence is addressed with an index.

Counting starting from o

0 1 2 3 4 5

-6 5 -4 -3 -2 -1
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Python Sequences and Indexing

Built-in sequences: list, str, tuple, bytes.

Each element in the sequence is addressed with an index.

Counting starting from o

0 1 2 3 4 5

-6 5 -4 -3 -2 -1
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Python Sequences and Slicing

Slicing: accessing part(s) of a sequence

SEQ = a sequence, a,b are int

SEQ
SEQ
SEQ
SEQ
SEQ

v

a:b]
:b], SEQ[a:],
3

Ea:b:s]

1:-1]
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(what if a > len(SEQ), b > len(SEQ), a
and/or b negative




Python Object & Reference

Mappings from namespace to objects,
one to one
or
one to many.

Namespace

Every object have an
Unique id.

id() method

IS operator
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Python Variables

Namespace

@ UNIVERSITY
OF APPLIED SCIENCES



Python Variables

student_num .amespace
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Python Variables

student_num .amespace
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Python Object & Reference — Mutable and Immutable

Difference: can you change the object itself once it is
created?

C )

if yes: lists, dictionaries, sets

mutable -
elif no:

immutable( ) A
Numbers, strings, bytes,

tuples, Booleans
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Python Memory Management
Automatic!
Reference counting.
Runtime keeps track of all references to an object.

When zero, unusable & can be deleted.

Additional memory and computation power required
compared to manual memory management.
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Python Garbage Collection
By default, python uses CPython implementation.

Uses:
. Reference counting
. Generational garbage collection
o Cyclic garbage collector:
v tracks all objects
v" have different generations (in total 3)
v threshold in each generation (collect when it reaches)
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The Cyclic Garbage Collector

Many other conditions do exist!

_

Frequency of High
garbage collection
Threshold High Low
700 10 10

vived gc

Object
Creation

om gc survive

survived| gc

genO

, _ Did not\survive
Did not survive
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Wrap-up

v’ Data types

v Numbers & strings

v' Identifiers

v’ Operators

v' Sequences, indexing and slicing
v' Objects & references

v" Memory Management & Garbage collection
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Wrap-up

v’ Practice makes perfect.
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